A Coupled Ligand-Receptor Bulk-Surface System on a Moving Domain: Well Posedness, Regularity, and Convergence to Equilibrium

We prove existence, uniqueness, and regularity for a reaction-diffusion system of coupled bulk-surface equations on a moving domain modelling receptor-ligand dynamics in cells. The nonlinear coupling between the three unknowns is through the Robin boundary condition for the bulk quantity and the right hand sides of the two surface equations. Our results are new even in the non-moving setting, and in this case we also show exponential convergence to a steady state. The primary complications in the analysis are indeed the nonlinear coupling and the Robin boundary condition. For the well posedness and essential boundedness of solutions we use several De Giorgi-type arguments, and we also develop some useful estimates to allow us to apply a Steklov averaging technique for time-dependent operators to prove that solutions are strong. Some of these auxiliary results presented in this paper are of independent interest by themselves.

[1]  John A. Mackenzie,et al.  A computational method for the coupled solution of reaction–diffusion equations on evolving domains and manifolds: Application to a model of cell migration and chemotaxis , 2016, J. Comput. Phys..

[2]  G S.,et al.  A trace finite element method for a class of coupled bulk-interface transport problems , 2014 .

[3]  J. Serrin,et al.  Local behavior of solutions of quasilinear parabolic equations , 1967 .

[4]  Charles M. Elliott,et al.  An abstract framework for parabolic PDEs on evolving spaces , 2014, 1403.4500.

[5]  Charles M. Elliott,et al.  On some linear parabolic PDEs on moving hypersurfaces , 2014, 1412.1624.

[6]  Laurent Desvillettes,et al.  Exponential Convergence to Equilibrium for Nonlinear Reaction-Diffusion Systems Arising in Reversible Chemistry , 2013, System Modelling and Optimization.

[7]  O. Ladyženskaja Linear and Quasilinear Equations of Parabolic Type , 1968 .

[8]  F. Rothe Global Solutions of Reaction-Diffusion Systems , 1984 .

[9]  THE BEST-CONSTANT PROBLEM FOR A FAMILY OF GAGLIARDO–NIRENBERG INEQUALITIES ON A COMPACT RIEMANNIAN MANIFOLD , 2003, Proceedings of the Edinburgh Mathematical Society.

[10]  Robin Nittka,et al.  Inhomogeneous parabolic Neumann problems , 2011, 1108.6227.

[11]  Anotida Madzvamuse,et al.  Cross-diffusion-driven instability for reaction-diffusion systems: analysis and simulations , 2015, Journal of mathematical biology.

[12]  Dieter Bothe,et al.  Cross-Diffusion Limit for a Reaction-Diffusion System with Fast Reversible Reaction , 2012 .

[13]  Irving R Epstein,et al.  Cross-diffusion and pattern formation in reaction-diffusion systems. , 2009, Physical chemistry chemical physics : PCCP.

[14]  Julia,et al.  Vector-valued Laplace Transforms and Cauchy Problems , 2011 .

[15]  E. DiBenedetto Degenerate Parabolic Equations , 1993 .

[16]  D. Aronson,et al.  On the Green's function for second order parabolic differential equations with discontinuous coefficients , 1963 .

[17]  C. M. Elliott,et al.  A Stefan problem on an evolving surface , 2014, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[18]  J. Gálvez,et al.  Mathematical modelling and computational study of two-dimensional and three-dimensional dynamics of receptor–ligand interactions in signalling response mechanisms , 2013, Journal of Mathematical Biology.

[19]  L. Desvillettes,et al.  Exponential decay toward equilibrium via entropy methods for reaction–diffusion equations , 2006 .

[20]  Anotida Madzvamuse,et al.  Stability analysis of reaction-diffusion models on evolving domains: The effects of cross-diffusion , 2015 .

[21]  Axel Voigt,et al.  Signaling networks and cell motility: a computational approach using a phase field description , 2014, Journal of mathematical biology.

[22]  C. M. Elliott,et al.  An ALE ESFEM for Solving PDEs on Evolving Surfaces , 2012 .

[23]  W. Feng Coupled system of reaction-diffusion equations and applications in carrier facilitated diffusion , 1991 .

[24]  Herbert Amann,et al.  Global existence for semilinear parabolic systems. , 1985 .

[25]  Charles M. Elliott,et al.  Finite element methods for surface PDEs* , 2013, Acta Numerica.

[26]  Morton E. Gurtin,et al.  Transport relations for surface integrals arising in the formulation of balance laws for evolving fluid interfaces , 2005, Journal of Fluid Mechanics.

[27]  Wei-Ming Ni,et al.  DIFFUSION, CROSS-DIFFUSION, AND THEIR SPIKE-LAYER STEADY STATES , 1998 .

[28]  Charles M. Elliott,et al.  Finite elements on evolving surfaces , 2007 .

[29]  N. Shigesada,et al.  Spatial segregation of interacting species. , 1979, Journal of theoretical biology.

[30]  E. Latos,et al.  Well-posedness and exponential equilibration of a volume-surface reaction-diffusion system with nonlinear boundary coupling , 2014, 1404.2809.

[31]  K. Fellner,et al.  Exponential decay towards equilibrium and global classical solutions for nonlinear reaction–diffusion systems , 2015, 1504.06711.

[32]  K. Fellner EXPLICIT EXPONENTIAL CONVERGENCE TO EQUILIBRIUM FOR MASS ACTION REACTION-DIFFUSION SYSTEMS , 2015 .

[33]  Charles M. Elliott,et al.  Coupled Bulk-Surface Free Boundary Problems Arising from a Mathematical Model of Receptor-Ligand Dynamics , 2015, SIAM J. Math. Anal..

[34]  P. Weidemaier Maximal regularity for parabolic equations with inhomogeneous boundary conditions in Sobolev spaces with mixed _{}-norm , 2002 .

[35]  P. Grisvard Elliptic Problems in Nonsmooth Domains , 1985 .

[36]  G. Stampacchia,et al.  Inverse Problem for a Curved Quantum Guide , 2012, Int. J. Math. Math. Sci..

[37]  U. Gianazza,et al.  Harnack's Inequality for Degenerate and Singular Parabolic Equations , 2011 .

[38]  J. Prüss,et al.  Optimal Lp-Lq-estimates for parabolic boundary value problems with inhomogeneous data , 2007 .

[39]  F. Demengel,et al.  Functional Spaces for the Theory of Elliptic Partial Differential Equations , 2012 .

[40]  D. Stroock Logarithmic Sobolev inequalities for gibbs states , 1993 .

[41]  M. Vierling,et al.  Parabolic optimal control problems on evolving surfaces subject to point-wise box constraints on the control – theory and numerical realization , 2014 .

[42]  Matthias Röger,et al.  Turing instabilities in a mathematical model for signaling networks , 2012, Journal of mathematical biology.

[43]  Matthias Röger,et al.  Symmetry breaking in a bulk–surface reaction–diffusion model for signalling networks , 2014 .

[44]  Franck Boyer,et al.  Mathematical Tools for the Study of the Incompressible Navier-Stokes Equations and Related Models , 2012 .

[45]  Ansgar Jüngel,et al.  Entropy Methods for Diffusive Partial Differential Equations , 2016 .