Entropic uncertainty relation under multiple bosonic reservoirs with filtering operator

We study the dynamics of quantum-memory-assisted entropic uncertainty relation for an open quantum system of two qubits, which interact independently with their own multiple bosonic reservoirs at zero temperature. It is shown that the entropic uncertainty can be reduced with the increase in the number of reservoirs in both the weak and strong coupling regimes. This indicates a fact that the non-Markovianity may play a positive role in reducing entropic uncertainty. Furthermore, an unusual relation is found between the entropic uncertainty and mixedness of the quantum states. We finally reveal an effective manipulation of entropic uncertainty and mixedness by means of the local filtering operation.

[1]  S. Luo Quantum uncertainty of mixed states based on skew information (4 pages) , 2006 .

[2]  Patrick J. Coles,et al.  Improved entropic uncertainty relations and information exclusion relations , 2013, 1307.4265.

[3]  Heng Fan,et al.  Entropic uncertainty relations for multiple measurements , 2014, 1410.5177.

[4]  Cheng-Cheng Liu,et al.  Quantum-memory-assisted entropic uncertainty relation in a Heisenberg XYZ chain with an inhomogeneous magnetic field , 2017 .

[5]  H. Fan,et al.  Entropic uncertainty relations under the relativistic motion , 2013, 1309.7443.

[6]  A. S. Majumdar,et al.  Detecting mixedness of qutrit systems using the uncertainty relation , 2012, 1206.0884.

[7]  D. Deutsch Uncertainty in Quantum Measurements , 1983 .

[8]  Ming‐Liang Hu,et al.  Competition between quantum correlations in the quantum-memory-assisted entropic uncertainty relation , 2012, 1212.0319.

[9]  Quantum-memory-assisted entropic uncertainty relation under noise , 2012, 1203.3331.

[10]  R. Prevedel,et al.  Experimental investigation of the uncertainty principle in the presence of quantum memory and its application to witnessing entanglement , 2010, 1012.0332.

[11]  Yang Zhang,et al.  Entropic Uncertainty Relation and Information Exclusion Relation for multiple measurements in the presence of quantum memory , 2015, Scientific Reports.

[12]  H. Fan,et al.  Uncertainty relation in Schwarzschild spacetime , 2015, 1501.01700.

[13]  Maassen,et al.  Generalized entropic uncertainty relations. , 1988, Physical review letters.

[14]  Xiao Zheng,et al.  The effects of mixedness and entanglement on the properties of the entropic uncertainty in Heisenberg model with Dzyaloshinski–Moriya interaction , 2017, Quantum Inf. Process..

[15]  Ross D. Hoehn,et al.  Entropic uncertainty relations for Markovian and non-Markovian processes under a structured bosonic reservoir , 2017, Scientific Reports.

[16]  W. Wootters Entanglement of Formation of an Arbitrary State of Two Qubits , 1997, quant-ph/9709029.

[17]  S. Salimi,et al.  Reducing the entropic uncertainty lower bound in the presence of quantum memory via LOCC , 2016 .

[18]  M. Fang,et al.  Controlling of Entropic Uncertainty in Qubits System Under the Generalized Amplitude Damping Channel via Weak Measurements , 2016 .

[19]  Guo‐Feng Zhang,et al.  The effects of different quantum feedback types on the tightness of the variance-based uncertainty , 2017, 1702.04452.

[20]  Zhiming Huang,et al.  Dynamics of entropic uncertainty for atoms immersed in thermal fluctuating massless scalar field , 2018, Quantum Inf. Process..

[21]  Zehua Tian,et al.  Entropic uncertainty relation in de Sitter space , 2015, 1501.00623.

[22]  N. Gisin Hidden quantum nonlocality revealed by local filters , 1996 .

[23]  S. Wehner,et al.  The Uncertainty Principle Determines the Nonlocality of Quantum Mechanics , 2010, Science.

[24]  Mark M. Wilde,et al.  Quantum discord and classical correlation can tighten the uncertainty principle in the presence of quantum memory , 2012, 1204.3803.

[25]  G. Guo,et al.  Experimental investigation of the entanglement-assisted entropic uncertainty principle , 2010, 1012.0361.

[26]  J. Boileau,et al.  Conjectured strong complementary information tradeoff. , 2008, Physical review letters.

[27]  A. S. Majumdar,et al.  Fine-grained lower limit of entropic uncertainty in the presence of quantum memory. , 2012, Physical review letters.

[28]  Liu Ye,et al.  Optimized decoherence suppression of two qubits in independent non-Markovian environments using weak measurement and quantum measurement reversal , 2015, Quantum Inf. Process..

[29]  Xiao Zheng,et al.  Variance-based uncertainty relation for incompatible observers , 2017, Quantum Inf. Process..

[30]  Zhong-Xiao Man,et al.  Non-Markovianity of a two-level system transversally coupled to multiple bosonic reservoirs , 2014 .

[31]  Dong Wang,et al.  Exploration of quantum-memory-assisted entropic uncertainty relations in a noninertial frame , 2017 .

[32]  R. Renner,et al.  Uncertainty relation for smooth entropies. , 2010, Physical review letters.

[33]  Ning Wang,et al.  The creation of quantum correlation and entropic uncertainty relation in photonic crystals , 2016, Quantum Inf. Process..

[34]  Zhiming Huang,et al.  Quantum-memory-assisted entropic uncertainty in spin models with Dzyaloshinskii–Moriya interaction , 2018 .

[35]  Dong Wang,et al.  Steering quantum-memory-assisted entropic uncertainty under unital and nonunital noises via filtering operations , 2017, Quantum Inf. Process..

[36]  E. H. Kennard Zur Quantenmechanik einfacher Bewegungstypen , 1927 .

[37]  Michael Siomau,et al.  Defeating entanglement sudden death by a single local filtering , 2012, 1205.6601.

[38]  Patrick J. Coles,et al.  Entropic uncertainty relations and their applications , 2015, 1511.04857.

[39]  Zhu-Jun Zheng,et al.  The local indistinguishability of multipartite product states , 2016, Quantum Inf. Process..

[40]  Kraus Complementary observables and uncertainty relations. , 1987, Physical review. D, Particles and fields.

[41]  W. Heisenberg Über den anschaulichen Inhalt der quantentheoretischen Kinematik und Mechanik , 1927 .

[42]  Min Yu,et al.  Controlling the quantum-memory-assisted entropic uncertainty relation by quantum-jump-based feedback control in dissipative environments , 2017, Quantum Inf. Process..

[43]  G. Compagno,et al.  Non-markovian effects on the dynamics of entanglement. , 2007, Physical review letters.

[44]  Jian Zou,et al.  Measuring non-Markovianity based on local quantum uncertainty , 2014 .

[45]  H. Fan,et al.  Experimental investigation of quantum entropic uncertainty relations for multiple measurements in pure diamond , 2017, Scientific Reports.

[46]  Dong Wang,et al.  Decoherence effect on quantum-memory-assisted entropic uncertainty relations , 2018, Quantum Inf. Process..

[47]  S. Salimi,et al.  Tightening the entropic uncertainty bound in the presence of quantum memory , 2016, 1602.04296.

[48]  Yunlong Xiao,et al.  Strong entropic uncertainty relations for multiple measurements , 2016, 1604.02927.

[49]  Dong Wang,et al.  How the Relativistic Motion Affect Quantum Fisher Information and Bell Non-locality for Multipartite state , 2017, Scientific Reports.

[50]  Marco Tomamichel,et al.  Tight finite-key analysis for quantum cryptography , 2011, Nature Communications.

[51]  M. Suhail Zubairy,et al.  Reversing entanglement change by a weak measurement , 2010 .

[52]  H. P. Robertson The Uncertainty Principle , 1929 .