TESTING IN SITU ASSEMBLY WITH THE KEPLER PLANET CANDIDATE SAMPLE

We present a Monte Carlo model for the structure of low-mass (total mass <25 M ?) planetary systems that form by the in situ gravitational assembly of planetary embryos into final planets. Our model includes distributions of mass, eccentricity, inclination, and period spacing that are based on the simulation of a disk of 20 M ?, forming planets around a solar-mass star, and assuming a power-law surface density distribution that drops with distance a as a ?1.5. The output of the Monte Carlo model is then subjected to the selection effects that mimic the observations of a transiting planet search such as that performed by the Kepler satellite. The resulting comparison of the output to the properties of the observed sample yields an encouraging agreement in terms of the relative frequencies of multiple-planet systems and the distribution of the mutual inclinations when moderate tidal circularization is taken into account. The broad features of the period distribution and radius distribution can also be matched within this framework, although the model underpredicts the distribution of small period ratios. This likely indicates that some dissipation is still required in the formation process. The most striking deviation between the model and observations is in the ratio of single to multiple systems in that there are roughly 50% more single-planet candidates observed than are produced in any model population. This suggests that some systems must suffer additional attrition to reduce the number of planets or increase the range of inclinations.

[1]  M. R. Haas,et al.  PLANET OCCURRENCE WITHIN 0.25 AU OF SOLAR-TYPE STARS FROM KEPLER , 2011, 1103.2541.

[2]  Tsevi Mazeh,et al.  TRANSIT TIMING OBSERVATIONS FROM KEPLER. VIII. CATALOG OF TRANSIT TIMING MEASUREMENTS OF THE FIRST TWELVE QUARTERS , 2013, 1301.5499.

[3]  E. Ford,et al.  QUANTIFYING THE CHALLENGES OF DETECTING UNSEEN PLANETARY COMPANIONS WITH TRANSIT TIMING VARIATIONS , 2010, 1011.1466.

[4]  D. Lin,et al.  Dynamical Shake-up of Planetary Systems. II. N-Body Simulations of Solar System Terrestrial Planet Formation Induced by Secular Resonance Sweeping , 2008, 0802.0541.

[5]  K. Kinemuchi,et al.  TRANSIT TIMING OBSERVATIONS FROM KEPLER. V. TRANSIT TIMING VARIATION CANDIDATES IN THE FIRST SIXTEEN MONTHS FROM POLYNOMIAL MODELS , 2012, 1201.1892.

[6]  Migration and the Formation of Systems of Hot Super-Earths and Neptunes , 2006, astro-ph/0609779.

[7]  F. Allard,et al.  The effect of evaporation on the evolution of close-in giant planets , 2004, astro-ph/0404101.

[8]  R. A. Street,et al.  FREQUENCY OF SOLAR-LIKE SYSTEMS AND OF ICE AND GAS GIANTS BEYOND THE SNOW LINE FROM HIGH-MAGNIFICATION MICROLENSING EVENTS IN 2005–2008 , 2010, 1001.0572.

[9]  F. Fressin,et al.  THE FALSE POSITIVE RATE OF KEPLER AND THE OCCURRENCE OF PLANETS , 2013, 1301.0842.

[10]  Harold F. Levison,et al.  The Role of Giant Planets in Terrestrial Planet Formation , 2000 .

[11]  S. Ida,et al.  ORBITAL DISTRIBUTIONS OF CLOSE-IN PLANETS AND DISTANT PLANETS FORMED BY SCATTERING AND DYNAMICAL TIDES , 2011 .

[12]  K. Ulaczyk,et al.  Unbound or distant planetary mass population detected by gravitational microlensing , 2011, Nature.

[13]  S. Seager,et al.  THREE POSSIBLE ORIGINS FOR THE GAS LAYER ON GJ 1214b , 2009, 0912.3243.

[14]  Steven Soter,et al.  Q in the solar system , 1966 .

[15]  F. Bouchy,et al.  The HARPS survey for southern extra-solar planets. II. A 14 Earth-masses exoplanet around μ Arae , 2004, astro-ph/0408471.

[16]  M. R. Haas,et al.  A closely packed system of low-mass, low-density planets transiting Kepler-11 , 2011, Nature.

[17]  W. Ward Protoplanet Migration by Nebula Tides , 1997 .

[18]  Howard Isaacson,et al.  The Occurrence and Mass Distribution of Close-in Super-Earths, Neptunes, and Jupiters , 2010, Science.

[19]  Michael E. Eyler,et al.  Discovery of a Very Bright, Nearby Gravitational Microlensing Event , 2007, astro-ph/0703125.

[20]  S. Tremaine,et al.  THE STATISTICS OF MULTI-PLANET SYSTEMS , 2011, 1106.5403.

[21]  A. Santerne,et al.  The SOPHIE search for northern extrasolar planets - V. Follow-up of ELODIE candidates: Jupiter-analogs around Sun-like stars , 2012, 1205.5835.

[22]  Jason H. Steffen,et al.  Kepler's missing planets , 2013, 1301.2394.

[23]  F. Fressin,et al.  CHARACTERISTICS OF PLANETARY CANDIDATES OBSERVED BY KEPLER. II. ANALYSIS OF THE FIRST FOUR MONTHS OF DATA , 2011, 1102.0541.

[24]  Konstantin Batygin,et al.  DISSIPATIVE DIVERGENCE OF RESONANT ORBITS , 2012, 1204.2791.

[25]  F. Pepe,et al.  Comparing HARPS and Kepler surveys The alignment of multiple-planet systems , 2012, 1202.2801.

[26]  Stopping inward planetary migration by a toroidal magnetic field , 2003, astro-ph/0301556.

[27]  K. Ulaczyk,et al.  A Jovian-Mass Planet in Microlensing Event OGLE-2005-BLG-071 , 2005 .

[28]  G. Mellema,et al.  Halting type I planet migration in non-isothermal disks , 2006, astro-ph/0608658.

[29]  Xavier Bonfils,et al.  A super-Earth transiting a nearby low-mass star , 2009, Nature.

[30]  Yanqin Wu,et al.  DENSITY AND ECCENTRICITY OF KEPLER PLANETS , 2012, 1210.7810.

[31]  D. Lin,et al.  THE IMPORTANCE OF DISK STRUCTURE IN STALLING TYPE I MIGRATION , 2012, 1205.4014.

[32]  John E. Chambers,et al.  Making the Terrestrial Planets: N-Body Integrations of Planetary Embryos in Three Dimensions , 1998 .

[33]  Marc Ollivier,et al.  The CoRoT space mission : early results Special feature The CoRoT-7 planetary system : two orbiting super-Earths , 2009 .

[34]  Will M. Farr,et al.  Hot Jupiters from secular planet–planet interactions , 2010, Nature.

[35]  Austin,et al.  KEPLER'S FIRST ROCKY PLANET: KEPLER-10b , 2011, 1102.0605.

[36]  G. Laughlin,et al.  The minimum-mass extrasolar nebula: in situ formation of close-in super-Earths , 2012, 1211.1673.

[37]  R. Paul Butler,et al.  A Planet Orbiting 47 Ursae Majoris , 1996 .

[38]  J. Laskar Chaotic diffusion in the Solar System , 2007, 0802.3371.

[39]  Peter Goldreich,et al.  Disk-Satellite Interactions , 1980 .

[40]  B. Macintosh,et al.  Direct Imaging of Multiple Planets Orbiting the Star HR 8799 , 2008, Science.

[41]  John C. Geary,et al.  ARCHITECTURE OF KEPLER'S MULTI-TRANSITING SYSTEMS. II. NEW INVESTIGATIONS WITH TWICE AS MANY CANDIDATES , 2012, The Astrophysical Journal.

[42]  P. Bodenheimer,et al.  Orbital migration of the planetary companion of 51 Pegasi to its present location , 1996, Nature.

[43]  Sean N. Raymond,et al.  PLANET–PLANET SCATTERING IN PLANETESIMAL DISKS , 2009, 0905.3741.

[44]  N. Murray,et al.  Planet Migration and Binary Companions: The Case of HD 80606b , 2003, astro-ph/0303010.

[45]  R. P. Butler,et al.  Habitable-zone super-Earth candidate in a six-planet system around the K2.5V star HD 40307 , 2012, 1211.1617.

[46]  Il,et al.  TRANSIT TIMING OBSERVATIONS FROM KEPLER. VI. POTENTIALLY INTERESTING CANDIDATE SYSTEMS FROM FOURIER-BASED STATISTICAL TESTS , 2012, 1201.1873.

[47]  K. Menou,et al.  Diffusive Migration of Low-Mass Protoplanets in Turbulent Disks , 2006, astro-ph/0603235.

[48]  Eccentricity Evolution of Extrasolar Multiple Planetary Systems Due to the Depletion of Nascent Protostellar Disks , 2002, astro-ph/0205104.

[49]  Eiichiro Kokubo,et al.  Oligarchic growth of protoplanets , 1996 .

[50]  David Ehrenreich,et al.  Mass-loss rates for transiting exoplanets , 2011, 1103.0011.

[51]  R. P. Butler,et al.  Detection of a Neptune-Mass Planet in the ρ1 Cancri System Using the Hobby-Eberly Telescope , 2004, astro-ph/0408585.

[52]  S. Kenyon,et al.  MIGRATION OF PLANETS EMBEDDED IN A CIRCUMSTELLAR DISK , 2011, 1101.4025.

[53]  C. Baruteau,et al.  A torque formula for non-isothermal type I planetary migration – I. Unsaturated horseshoe drag , 2009, 0909.4552.

[54]  Yanqin Wu,et al.  THEORY OF SECULAR CHAOS AND MERCURY'S ORBIT , 2010, 1012.3706.

[55]  S. Ida,et al.  ECCENTRICITY TRAP: TRAPPING OF RESONANTLY INTERACTING PLANETS NEAR THE DISK INNER EDGE , 2010, 1008.0461.

[56]  B. Hansen FORMATION OF THE TERRESTRIAL PLANETS FROM A NARROW ANNULUS , 2009, 0908.0743.

[57]  C. Moutou,et al.  SOPHIE velocimetry of Kepler transit candidates VII. A false-positive rate of 35% for Kepler close-in giant candidates , 2012, 1206.0601.

[58]  J. Chambers A hybrid symplectic integrator that permits close encounters between massive bodies , 1999 .

[59]  F. Bouchy,et al.  The HARPS search for southern extra-solar planets: XVIII. An Earth-mass planet in the GJ 581 planetary system , 2009, 0906.2780.

[60]  Jean-Luc Margot,et al.  ARCHITECTURE OF PLANETARY SYSTEMS BASED ON KEPLER DATA: NUMBER OF PLANETS AND COPLANARITY , 2012, 1207.5250.

[61]  F. Adams,et al.  Type I Planetary Migration with MHD Turbulence , 2003, astro-ph/0308406.

[62]  J. Chambers Making More Terrestrial Planets , 2001 .

[63]  B. Hansen,et al.  MIGRATION THEN ASSEMBLY: FORMATION OF NEPTUNE-MASS PLANETS INSIDE 1 AU , 2011, 1105.2050.

[64]  Jie Li,et al.  THE DISTRIBUTION OF TRANSIT DURATIONS FOR KEPLER PLANET CANDIDATES AND IMPLICATIONS FOR THEIR ORBITAL ECCENTRICITIES , 2011, 1102.0547.

[65]  Brett Gladman,et al.  Dynamics of Systems of Two Close Planets , 1993 .

[66]  A. Youdin THE EXOPLANET CENSUS: A GENERAL METHOD APPLIED TO KEPLER , 2011, 1105.1782.

[67]  M. Mayor,et al.  A Jupiter-mass companion to a solar-type star , 1995, Nature.

[68]  B. Macintosh,et al.  Images of a fourth planet orbiting HR 8799 , 2010, Nature.

[69]  Michel Mayor,et al.  An extrasolar planetary system with three Neptune-mass planets , 2006, Nature.

[70]  B. Monard,et al.  A COLD NEPTUNE-MASS PLANET OGLE-2007-BLG-368Lb: Cold neptunes are common , 2009, 0912.1171.

[71]  J. Lissauer,et al.  A ~7.5 M⊕ Planet Orbiting the Nearby Star, GJ 876* , 2005, astro-ph/0510508.

[72]  Alessandro Morbidelli,et al.  Disk Surface Density Transitions as Protoplanet Traps , 2006 .

[73]  Douglas N. C. Lin,et al.  Toward a Deterministic Model of Planetary Formation. V. Accumulation Near the Ice Line and Super-Earths , 2008 .

[74]  O. Szewczyk,et al.  Discovery of a cool planet of 5.5 Earth masses through gravitational microlensing , 2006, Nature.

[75]  R. Paul Butler,et al.  Three New “51 Pegasi-Type” Planets , 1997 .

[76]  Eric B. Ford,et al.  Dynamical Instabilities and the Formation of Extrasolar Planetary Systems , 1996, Science.

[77]  Jon M. Jenkins,et al.  ARCHITECTURE AND DYNAMICS OF KEPLER'S CANDIDATE MULTIPLE TRANSITING PLANET SYSTEMS , 2011, 1102.0543.

[78]  Howard Isaacson,et al.  Kepler-9: A System of Multiple Planets Transiting a Sun-Like Star, Confirmed by Timing Variations , 2010, Science.

[79]  John Asher Johnson,et al.  HOT STARS WITH HOT JUPITERS HAVE HIGH OBLIQUITIES , 2010, 1006.4161.

[80]  R. Pudritz,et al.  The origin of planetary system architectures – I. Multiple planet traps in gaseous discs , 2011, 1105.4015.

[81]  K. Kinemuchi,et al.  ALMOST ALL OF KEPLER'S MULTIPLE-PLANET CANDIDATES ARE PLANETS , 2012, 1201.5424.

[82]  S. Ida,et al.  EFFECTS OF DYNAMICAL EVOLUTION OF GIANT PLANETS ON SURVIVAL OF TERRESTRIAL PLANETS , 2012, 1209.1320.

[83]  Mark Clampin,et al.  Optical Images of an Exosolar Planet 25 Light-Years from Earth , 2008, Science.

[84]  Las Cumbres Observatory Global Telescope Network,et al.  PLANETARY CANDIDATES OBSERVED BY KEPLER. III. ANALYSIS OF THE FIRST 16 MONTHS OF DATA , 2012, 1202.5852.

[85]  John Asher Johnson,et al.  ON THE LOW FALSE POSITIVE PROBABILITIES OF KEPLER PLANET CANDIDATES , 2011, 1101.5630.

[86]  Jack J. Lissauer,et al.  Orbital stability of systems of closely-spaced planets , 2009 .

[87]  D. Lin,et al.  TOWARD A DETERMINISTIC MODEL OF PLANETARY FORMATION. VI. DYNAMICAL INTERACTION AND COAGULATION OF MULTIPLE ROCKY EMBRYOS AND SUPER-EARTH SYSTEMS AROUND SOLAR-TYPE STARS , 2010, 1006.2584.

[88]  S. Seager,et al.  Mass-Radius Relationships for Solid Exoplanets , 2007, 0707.2895.

[89]  D. Frail,et al.  A planetary system around the millisecond pulsar PSR1257 + 12 , 1992, Nature.

[90]  W. Ward Solar nebula dispersal and the stability of the planetary system: I. Scanning secular resonance theory , 1981 .

[91]  S. Tremaine,et al.  Submitted to ApJ Preprint typeset using L ATEX style emulateapj v. 10/09/06 SHRINKING BINARY AND PLANETARY ORBITS BY KOZAI CYCLES WITH TIDAL FRICTION , 2022 .

[92]  Matthew J. Holman,et al.  The Use of Transit Timing to Detect Terrestrial-Mass Extrasolar Planets , 2005, Science.

[93]  P. Armitage,et al.  The Influence of Massive Planet Scattering on Nascent Terrestrial Planets , 2005, astro-ph/0501356.