Radial Basis Functions Versus Geostatistics in Spatial Interpolations

A key problem in environmental monitoring is the spatial interpolation. The main current approach in spatial interpolation is geostatistical. Geostatistics is neither the only nor the best spatial interpolation method. Actually there is no “best” method, universally valid. Choosing a particular method implies to make assumptions. The understanding of initial assumption, of the methods used, and the correct interpretation of the interpolation results are key elements of the spatial interpolation process. A powerful alternative to geostatistics in spatial interpolation is the use of the soft computing methods. They offer the potential for a more flexible, less assumption dependent approach. Artificial Neural Networks are well suited for this kind of problems, due to their ability to handle non-linear, noisy, and inconsistent data. The present paper intends to prove the advantage of using Radial Basis Functions (RBF) instead of geostatistics in spatial interpolations, based on a detailed analyze and modeling of the SIC2004 (Spatial Interpolation Comparison) dataset.

[1]  D. Marquardt An Algorithm for Least-Squares Estimation of Nonlinear Parameters , 1963 .

[2]  Guoqiang Peter Zhang,et al.  Neural network forecasting for seasonal and trend time series , 2005, Eur. J. Oper. Res..

[3]  Vladimir N. Vapnik,et al.  The Nature of Statistical Learning Theory , 2000, Statistics for Engineering and Information Science.

[4]  Vladimir Vapnik,et al.  Statistical learning theory , 1998 .

[5]  Christopher Krügel,et al.  Intrusion Detection and Correlation - Challenges and Solutions , 2004, Advances in Information Security.

[6]  Donald F. Specht,et al.  Probabilistic neural networks , 1990, Neural Networks.

[7]  Nathan Intrator,et al.  Bootstrapping with Noise: An Effective Regularization Technique , 1996, Connect. Sci..

[8]  Thomas G. Dietterich What is machine learning? , 2020, Archives of Disease in Childhood.

[9]  Stephen R. Graubard El nuevo debate sobre la inteligencia artificial: sistemas simbólicos y redes neuronales , 1999 .

[10]  Dong Seong Kim,et al.  Genetic algorithm to improve SVM based network intrusion detection system , 2005, 19th International Conference on Advanced Information Networking and Applications (AINA'05) Volume 1 (AINA papers).

[11]  A. R. H. Swan,et al.  Introduction to Geological Data Analysis , 1995 .

[12]  Qi-Jun Zhang,et al.  Artificial neural networks for RF and microwave design - from theory to practice , 2003 .

[13]  Jill P. Mesirov,et al.  Class prediction and discovery using gene expression data , 2000, RECOMB '00.

[14]  Petri Koistinen,et al.  Kernel regression and backpropagation training with noise , 1991, [Proceedings] 1991 IEEE International Joint Conference on Neural Networks.

[15]  David E. Root,et al.  Fundamentals of Nonlinear Behavioral Modeling for RF and Microwave Design , 2005 .

[16]  Qi-Jun Zhang,et al.  Neural Networks for RF and Microwave Design , 2000 .

[17]  Ana María Sánchez Melero,et al.  Facultad de Informática , 2007 .

[18]  Vasily Demyanov,et al.  Neural Network Residual Kriging Application for Climatic Data , 1998 .

[19]  Yoh-Han Pao,et al.  Adaptive pattern recognition and neural networks , 1989 .

[20]  Rick Stiffler,et al.  Cisco Secure Intrusion Detection Systems , 2001 .

[21]  S. Oh,et al.  Regularization using jittered training data , 1992, [Proceedings 1992] IJCNN International Joint Conference on Neural Networks.

[22]  T. Poggio,et al.  Multiclass cancer diagnosis using tumor gene expression signatures , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[23]  Heekuck Oh,et al.  Neural Networks for Pattern Recognition , 1993, Adv. Comput..

[24]  Eleazar Eskin,et al.  A GEOMETRIC FRAMEWORK FOR UNSUPERVISED ANOMALY DETECTION: DETECTING INTRUSIONS IN UNLABELED DATA , 2002 .

[25]  L. Ljung,et al.  Overtraining, regularization and searching for a minimum, with application to neural networks , 1995 .

[26]  B. Tulskaya Neural Network Residual Kriging Application for Climatic Data , 2002 .

[27]  J. Downing,et al.  Classification, subtype discovery, and prediction of outcome in pediatric acute lymphoblastic leukemia by gene expression profiling. , 2002, Cancer cell.

[28]  Marcel J. T. Reinders,et al.  ROBUST GENETIC NETWORK MODELING BY ADDING NOISY DATA , 2001 .

[29]  Grégoire Dubois,et al.  Introduction to the Spatial Interpolation Comparison (SIC) 2004 Exercise and Presentation of the Datasets , 2005 .

[30]  M.C.E. Yagoub,et al.  Neural based dynamic modeling of nonlinear microwave circuits , 2002, 2002 IEEE MTT-S International Microwave Symposium Digest (Cat. No.02CH37278).

[31]  James V. Hansen,et al.  Some evidence on forecasting time-series with support vector machines , 2006, J. Oper. Res. Soc..

[32]  Dominique Schreurs,et al.  Nonlinear models of microwave power devices and circuits , 2004 .

[33]  José Ramón Hilera González,et al.  Redes neuronales artificiales: fundamentos, modelos y aplicaciones , 1995 .

[34]  Bernhard Schölkopf,et al.  A tutorial on support vector regression , 2004, Stat. Comput..

[35]  M. J. L. Orr,et al.  Recent advances in radial basis function networks , 1999 .

[36]  Christian A. Rees,et al.  Systematic variation in gene expression patterns in human cancer cell lines , 2000, Nature Genetics.

[37]  Ash A. Alizadeh,et al.  Distinct types of diffuse large B-cell lymphoma identified by gene expression profiling , 2000, Nature.

[38]  Robert Fildes,et al.  The accuracy of a procedural approach to specifying feedforward neural networks for forecasting , 2005, Comput. Oper. Res..

[39]  S. Hyakin,et al.  Neural Networks: A Comprehensive Foundation , 1994 .

[40]  Richard M. Simon,et al.  A Paradigm for Class Prediction Using Gene Expression Profiles , 2003, J. Comput. Biol..

[41]  Geoffrey J McLachlan,et al.  Selection bias in gene extraction on the basis of microarray gene-expression data , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[42]  Martin P. Loeb,et al.  CSI/FBI Computer Crime and Security Survey , 2004 .

[43]  Christopher M. Bishop,et al.  Current address: Microsoft Research, , 2022 .

[44]  Yunqian Ma,et al.  Practical selection of SVM parameters and noise estimation for SVM regression , 2004, Neural Networks.

[45]  Brian D. Ripley,et al.  Pattern Recognition and Neural Networks , 1996 .

[46]  Leonard J. Tashman,et al.  Out-of-sample tests of forecasting accuracy: an analysis and review , 2000 .

[47]  C. Evci,et al.  The path to beyond 3G systems: strategic and technological challenges , 2003 .

[48]  Nitesh V. Chawla,et al.  SMOTE: Synthetic Minority Over-sampling Technique , 2002, J. Artif. Intell. Res..

[49]  Sameer Singh,et al.  Novelty detection: a review - part 2: : neural network based approaches , 2003, Signal Process..

[51]  H. A. Alzaher,et al.  A new generation of global wireless compatibility , 2001 .

[52]  Erick F. Weiland Contouring geological surfaces with the computer , 1987 .

[53]  Samy Bengio,et al.  Local Machine Learning Models for Spatial Data Analysis , 2000 .

[54]  Kevin B. Korb,et al.  The Evaluation of Predictive Learners: Some Theoretical and Empirical Results , 2001, ECML.

[55]  Sven F. Crone,et al.  A study on the ability of Support Vector Regression and Neural Networks to Forecast Basic Time Series Patterns , 2006, IFIP AI.

[56]  Bernard Widrow,et al.  Improving the learning speed of 2-layer neural networks by choosing initial values of the adaptive weights , 1990, 1990 IJCNN International Joint Conference on Neural Networks.

[57]  Richard Baumgartner,et al.  Class prediction and discovery using gene microarray and proteomics mass spectroscopy data: curses, caveats, cautions , 2003, Bioinform..

[58]  M.I. Heywood,et al.  Host-based intrusion detection using self-organizing maps , 2002, Proceedings of the 2002 International Joint Conference on Neural Networks. IJCNN'02 (Cat. No.02CH37290).

[59]  Sunyoung Lee Rainfall Prediction Using Artificial Neural Networks , 1998 .

[60]  Richard Weber,et al.  A hybrid forecasting methodology using feature selection and support vector regression , 2005, Fifth International Conference on Hybrid Intelligent Systems (HIS'05).

[61]  David G. Stork,et al.  Pattern Classification , 1973 .

[62]  A. Lapedes,et al.  Nonlinear signal processing using neural networks: Prediction and system modelling , 1987 .

[63]  F.M. Ghannouchi,et al.  Dynamic behavioral modeling of 3G power amplifiers using real-valued time-delay neural networks , 2004, IEEE Transactions on Microwave Theory and Techniques.

[64]  Teuvo Kohonen,et al.  Self-Organizing Maps , 2010 .

[65]  Simon Haykin,et al.  Support vector machines for dynamic reconstruction of a chaotic system , 1999 .

[66]  John Mark,et al.  Introduction to radial basis function networks , 1996 .

[67]  Yoshua Bengio,et al.  Inference for the Generalization Error , 1999, Machine Learning.

[68]  Michael Y. Hu,et al.  Forecasting with artificial neural networks: The state of the art , 1997 .

[69]  G. Kompa,et al.  Power amplifier modeling using memory polynomial with non-uniform delay taps , 2004, 34th European Microwave Conference, 2004..

[70]  G Hilmi,et al.  HIERARCHICAL SELF ORGANIZING MAP BASED IDS ON KDD BENCHMARK , 2003 .

[71]  E. Vandamme,et al.  ANN model for AlGaN/GaN HEMTs constructed from near-optimal-load large-signal measurements , 2003, IEEE MTT-S International Microwave Symposium Digest, 2003.

[72]  Fernando José Aguilar Torres,et al.  Evaluación de diferentes técnicas de interpolación espacial para la generación de modelos digitales de elevación del terreno agrícola , 2001 .