5-Formyl- and 5-carboxyl-cytosine reduce the rate and substrate specificity of RNA polymerase II transcription

[1]  Yi Zhang,et al.  Mechanisms and functions of Tet protein-mediated 5-methylcytosine oxidation. , 2011, Genes & development.

[2]  R. Sandberg,et al.  CTCF-promoted RNA polymerase II pausing links DNA methylation to splicing , 2011, Nature.

[3]  Chuan He,et al.  Tet Proteins Can Convert 5-Methylcytosine to 5-Formylcytosine and 5-Carboxylcytosine , 2011, Science.

[4]  Yang Wang,et al.  Tet-Mediated Formation of 5-Carboxylcytosine and Its Excision by TDG in Mammalian DNA , 2011, Science.

[5]  A. Maiti,et al.  Thymine DNA Glycosylase Can Rapidly Excise 5-Formylcytosine and 5-Carboxylcytosine , 2011, The Journal of Biological Chemistry.

[6]  Markus Müller,et al.  The discovery of 5-formylcytosine in embryonic stem cell DNA. , 2011, Angewandte Chemie.

[7]  A. Klein-Szanto,et al.  Thymine DNA Glycosylase Is Essential for Active DNA Demethylation by Linked Deamination-Base Excision Repair , 2011, Cell.

[8]  Qing Dai,et al.  Syntheses of 5-formyl- and 5-carboxyl-dC containing DNA oligos as potential oxidation products of 5-hydroxymethylcytosine in DNA. , 2011, Organic letters.

[9]  C. Sunkel,et al.  RNA polymerase II kinetics in polo polyadenylation signal selection , 2011, The EMBO journal.

[10]  Philipp Kapranov,et al.  Genome-wide mapping of 5-hydroxymethylcytosine in embryonic stem cells , 2011, Nature.

[11]  A. Bird,et al.  Embryonic lethal phenotype reveals a function of TDG in maintaining epigenetic stability , 2011, Nature.

[12]  F. Werner,et al.  Evolution of multisubunit RNA polymerases in the three domains of life , 2011, Nature Reviews Microbiology.

[13]  Jonathan Romiguier,et al.  Contrasting GC-content dynamics across 33 mammalian genomes: relationship with life-history traits and chromosome sizes. , 2010, Genome research.

[14]  Julie A. Law,et al.  Establishing, maintaining and modifying DNA methylation patterns in plants and animals , 2010, Nature Reviews Genetics.

[15]  E. Nudler RNA polymerase active center: the molecular engine of transcription. , 2009, Annual review of biochemistry.

[16]  Kenneth A. Johnson,et al.  Global kinetic explorer: a new computer program for dynamic simulation and fitting of kinetic data. , 2009, Analytical biochemistry.

[17]  Zachary B. Simpson,et al.  FitSpace explorer: an algorithm to evaluate multidimensional parameter space in fitting kinetic data. , 2009, Analytical biochemistry.

[18]  John T. Lis,et al.  Transcription Regulation Through Promoter-Proximal Pausing of RNA Polymerase II , 2008, Science.

[19]  Craig D. Kaplan,et al.  Structural Basis of Transcription: Role of the Trigger Loop in Substrate Specificity and Catalysis , 2006, Cell.

[20]  刘金明,et al.  IL-13受体α2降低血吸虫病肉芽肿的炎症反应并延长宿主存活时间[英]/Mentink-Kane MM,Cheever AW,Thompson RW,et al//Proc Natl Acad Sci U S A , 2005 .

[21]  A. Kornblihtt,et al.  A slow RNA polymerase II affects alternative splicing in vivo. , 2003, Molecular cell.

[22]  A. Bird,et al.  Epigenetic regulation of gene expression: how the genome integrates intrinsic and environmental signals , 2003, Nature Genetics.

[23]  P. Chambon,et al.  Association of CBP/p300 acetylase and thymine DNA glycosylase links DNA repair and transcription. , 2002, Molecular cell.

[24]  P. Cramer,et al.  Structural Basis of Transcription: RNA Polymerase II at 2.8 Ångstrom Resolution , 2001, Science.

[25]  Timothy B. Stockwell,et al.  The Sequence of the Human Genome , 2001, Science.

[26]  A. Shilatifard,et al.  Control of elongation by RNA polymerase II. , 2000, Trends in biochemical sciences.

[27]  M. Kashlev,et al.  The 8-Nucleotide-long RNA:DNA Hybrid Is a Primary Stability Determinant of the RNA Polymerase II Elongation Complex* , 2000, The Journal of Biological Chemistry.

[28]  M. Kashlev,et al.  Crucial role of the RNA:DNA hybrid in the processivity of transcription. , 1998, Molecular cell.

[29]  M. Dizdaroglu,et al.  Oxidative DNA base damage and antioxidant enzyme levels in childhood acute lymphoblastic leukemia , 1997, FEBS letters.

[30]  A. Shilatifard,et al.  Mechanism and regulation of transcriptional elongation and termination by RNA polymerase II. , 1997, Current opinion in genetics & development.

[31]  C. Gross,et al.  Determination of intrinsic transcription termination efficiency by RNA polymerase elongation rate. , 1994, Science.

[32]  R. Conaway,et al.  Multifunctional RNA polymerase II initiation factor delta from rat liver. Relationship between carboxyl-terminal domain kinase, ATPase, and DNA helicase activities. , 1993, The Journal of biological chemistry.

[33]  David R. Liu,et al.  Conversion of 5-Methylcytosine to 5- Hydroxymethylcytosine in Mammalian DNA by the MLL Partner TET1 , 2009 .

[34]  T. Lindahl,et al.  Repair of endogenous DNA damage. , 2000, Cold Spring Harbor symposia on quantitative biology.