The trace identity, a powerful tool for constructing the Hamiltonian structure of integrable systems

A new approach to Hamiltonian structures of integrable systems is proposed by making use of a trace identity. For a variety of isospectral problems that can be unified to one model ψx=Uψ, it is shown that both the related hierarchy of evolution equations and the Hamiltonian structure can be obtained from the same solution of the equation Vx=[U,V].

[1]  Alan C. Newell,et al.  Solitons in mathematics and physics , 1987 .

[2]  P J Fox,et al.  THE FOUNDATIONS OF MECHANICS. , 1918, Science.

[3]  T. Gui-zhang A simple approach to Hamiltonian structures of soliton equations.—I , 1983 .

[4]  M. Boiti,et al.  Canonical structure of soliton equations via isospectral eigenvalue problems , 1984 .

[5]  V. Arnold Mathematical Methods of Classical Mechanics , 1974 .

[6]  Tu Gui-Zhang,et al.  On Liouville integrability of zero-curvature equations and the Yang hierarchy , 1989 .

[7]  Athanassios S. Fokas,et al.  Symplectic structures, their B?acklund transformation and hereditary symmetries , 1981 .

[8]  David J. Kaup,et al.  An exact solution for a derivative nonlinear Schrödinger equation , 1978 .

[9]  M. Boiti,et al.  On a new hierarchy of Hamiltonian soliton equations , 1983 .

[10]  T. Koikawa,et al.  Canonical structure of soliton equations. I , 1982 .

[11]  M. Boiti,et al.  The Nonlinear Evolution Equations Related to the Wadati-Konno-Ichikawa Spectral Problem , 1983 .

[12]  A. Roy Chowdhury,et al.  On the Bäcklund transformation and Hamiltonian properties of superevaluation equations , 1986 .

[13]  Leon A. Takhtajan,et al.  Hamiltonian methods in the theory of solitons , 1987 .

[14]  T. Gui-zhang On formal variational calculus of higher dimensions , 1983 .

[15]  Kimiaki Konno,et al.  New Integrable Nonlinear Evolution Equations , 1979 .

[16]  Peter J. Olver,et al.  On the Hamiltonian structure of evolution equations , 1980, Mathematical Proceedings of the Cambridge Philosophical Society.

[17]  H. H. Chen,et al.  Integrability of Nonlinear Hamiltonian Systems by Inverse Scattering Method , 1979 .

[18]  M. Boiti,et al.  Bäcklund transformations related to the Kaup-Newell spectral problem , 1983 .

[19]  S. Takeno Dynamical Problems in Soliton Systems , 1985 .

[20]  Robert M. Miura,et al.  Korteweg‐deVries Equation and Generalizations. V. Uniqueness and Nonexistence of Polynomial Conservation Laws , 1970 .

[21]  A. Fokas,et al.  The recursion operator of the Kadomtsev-Petviashvili equation and the squared eigenfunctions of the Schrödinger operator , 1986 .

[22]  Mark J. Ablowitz,et al.  Solitons and the Inverse Scattering Transform , 1981 .

[23]  T. Gui-zhang A new hierarchy of coupled degenerate hamiltonian equations , 1983 .

[24]  Benno Fuchssteiner,et al.  Application of hereditary symmetries to nonlinear evolution equations , 1979 .

[25]  V. Kac Infinite dimensional Lie algebras: Frontmatter , 1990 .

[26]  Franco Magri,et al.  A Simple model of the integrable Hamiltonian equation , 1978 .