Tunable nitrogen-doped carbon nanoparticles from tannic acid and urea and their potential for sustainable soots

Nano-sized nitrogen-doped carbon spheres are synthesized from two cheap, readily available and sustainable precursors: tannic acid and urea. In combination with a polymer structuring agent, nitrogen content, sphere size and the surface (up to 400 m2 g−1) can be conveniently tuned by the precursor ratio, temperature and structuring agent content. Because the chosen precursors allow simple oven synthesis and avoid harsh conditions, this carbon nanosphere platform offers a more sustainable alternative to classical soots, for example, as printing pigments or conduction soots. The carbon spheres are demonstrated to be a promising as conductive carbon additive in anode materials for lithium ion batteries.

[1]  J. Pampel,et al.  Opening of Bottleneck Pores for the Improvement of Nitrogen Doped Carbon Electrocatalysts , 2016 .

[2]  Niels P Zussblatt,et al.  Eutectic Syntheses of Graphitic Carbon with High Pyrazinic Nitrogen Content , 2016, Advanced materials.

[3]  Yury Gogotsi,et al.  Not just graphene: The wonderful world of carbon and related nanomaterials , 2015 .

[4]  S. Dai,et al.  Recent advances in carbon nanospheres: synthetic routes and applications. , 2015, Chemical communications.

[5]  J. Kumar,et al.  Unraveling the mechanism of thermal and thermo-oxidative degradation of tannic acid , 2015 .

[6]  Zhao‐Yan Sun,et al.  A facile method of synthesizing uniform resin colloidal and microporous carbon spheres with high nitrogen content. , 2014, Journal of colloid and interface science.

[7]  D. Zhao,et al.  A facile soft-template synthesis of mesoporous polymeric and carbonaceous nanospheres , 2013, Nature Communications.

[8]  M. Antonietti,et al.  Salt and sugar: direct synthesis of high surface area carbon materials at low temperatures via hydrothermal carbonization of glucose under hypersaline conditions , 2013 .

[9]  M. Antonietti,et al.  Improving hydrothermal carbonization by using poly(ionic liquid)s. , 2013, Angewandte Chemie.

[10]  Lei Liu,et al.  Direct synthesis of ordered mesoporous carbons. , 2013, Chemical Society reviews.

[11]  Peter G. Bruce,et al.  Lithiumbatterien und elektrische Doppelschichtkondensatoren: aktuelle Herausforderungen , 2012 .

[12]  Yang-Kook Sun,et al.  Challenges facing lithium batteries and electrical double-layer capacitors. , 2012, Angewandte Chemie.

[13]  Robin J. White,et al.  Borax‐Mediated Formation of Carbon Aerogels from Glucose , 2012 .

[14]  C. R. Dennison,et al.  The Electrochemical Flow Capacitor: A New Concept for Rapid Energy Storage and Recovery , 2012 .

[15]  D. Zhao,et al.  A low-concentration hydrothermal synthesis of biocompatible ordered mesoporous carbon nanospheres with tunable and uniform size. , 2010, Angewandte Chemie.

[16]  Yuyan Shao,et al.  Nitrogen-doped graphene and its application in electrochemical biosensing. , 2010, ACS nano.

[17]  M. Antonietti,et al.  One-step hydrothermal synthesis of nitrogen-doped nanocarbons: albumine directing the carbonization of glucose. , 2010, ChemSusChem.

[18]  Markus Antonietti,et al.  Chemistry and materials options of sustainable carbon materials made by hydrothermal carbonization. , 2010, Chemical Society reviews.

[19]  Keith J. Stevenson,et al.  Effect of Nitrogen Concentration on Capacitance, Density of States, Electronic Conductivity, and Morphology of N-Doped Carbon Nanotube Electrodes , 2009 .

[20]  Z. Ismagilov,et al.  Structure and electrical conductivity of nitrogen-doped carbon nanofibers , 2009 .

[21]  R. Socha,et al.  XPS and NMR studies of phosphoric acid activated carbons , 2008 .

[22]  A. G. Kurenya,et al.  Effect of nitrogen doping on Raman spectra of multi‐walled carbon nanotubes , 2008 .

[23]  N. Mateus,et al.  Interaction of different polyphenols with bovine serum albumin (BSA) and human salivary alpha-amylase (HSA) by fluorescence quenching. , 2007, Journal of agricultural and food chemistry.

[24]  Dan Feng,et al.  A Family of Highly Ordered Mesoporous Polymer Resin and Carbon Structures from Organic−Organic Self-Assembly , 2006 .

[25]  C. Liang,et al.  Synthesis of mesoporous carbon materials via enhanced hydrogen-bonding interaction. , 2006, Journal of the American Chemical Society.

[26]  Linda F. Bisson,et al.  A Review of the Effect of Winemaking Techniques on Phenolic Extraction in Red Wines , 2005, American Journal of Enology and Viticulture.

[27]  D. Carroll,et al.  Temperature and flow rate of NH3 effects on nitrogen content and doping environments of carbon nanotubes grown by injection CVD method. , 2005, The journal of physical chemistry. B.

[28]  J. Boudou,et al.  Reactions of nitrogen and oxygen surface groups in nanoporous carbons under inert and reducing atmospheres. , 2005, Langmuir : the ACS journal of surfaces and colloids.

[29]  Antonio Macías-García,et al.  Electrical conductivity of carbon blacks under compression , 2005 .

[30]  J. Colson,et al.  Thermal decomposition (pyrolysis) of urea in an open reaction vessel , 2004 .

[31]  C. Van Alsenoy,et al.  Vibrational Analysis of Urea , 1999 .

[32]  J. Donnet Fifty years of research and progress on carbon black , 1994 .

[33]  Luigi Stradella,et al.  A study of the thermal decomposition of urea, of related compounds and thiourea using DSC and TG-EGA , 1993 .

[34]  H N Graham,et al.  Green tea composition, consumption, and polyphenol chemistry. , 1992, Preventive medicine.