New gamma-ray contributions to supersymmetric dark matter annihilation

We compute the electromagnetic radiative corrections to all leading annihilation processes which may occur in the Galactic dark matter halo, for dark matter in the framework of supersymmetric extensions of the Standard Model (MSSM and mSUGRA), and present the results of scans over the parameter space that is consistent with present observational bounds on the dark matter density of the Universe. Although these processes have previously been considered in some special cases by various authors, our new general analysis shows novel interesting results with large corrections that may be of importance, e.g., for searches at the soon to be launched GLAST gamma-ray space telescope. In particular, it is pointed out that regions of parameter space where there is a near degeneracy between the dark matter neutralino and the tau sleptons, radiative corrections may boost the gamma-ray yield by up to three or four orders of magnitude, even for neutralino masses considerably below the TeV scale, and will enhance the very characteristic signature of dark matter annihilations, namely a sharp step at the mass of the dark matter particle. Since this is a particularly interesting region for more constrained mSUGRA models of supersymmetry, we use an extensive scan over this parameter space to verify the significance of our findings. We also re-visit the direct annihilation of neutralinos into photons and point out that, for a considerable part of the parameter space, internal bremsstrahlung is more important for indirect dark matter searches than line signals.

[1]  H. Goldberg,et al.  Constraint on the photino mass from cosmology , 1983 .

[2]  Bergström,et al.  Observable monochromatic photons from cosmic photino annihilation. , 1988, Physical review. D, Particles and fields.

[3]  David B Cline The search for dark matter. , 2003, Scientific American.

[4]  H. Goldberg,et al.  Erratum: Constraint on the Photino Mass from Cosmology [Phys. Rev. Lett. 50, 1419 (1983)] , 2009 .

[5]  J. Lykken,et al.  Supergravity as the messenger of supersymmetry breaking , 1983 .

[6]  Full one-loop calculation of neutralino annihilation into two photons , 1997, hep-ph/9706232.

[7]  R. W. Ogburn,et al.  Limits on spin-independent interactions of weakly interacting massive particles with nucleons from the two-tower run of the cryogenic dark matter search. , 2006, Physical review letters.

[8]  Significant gamma lines from inert Higgs dark matter. , 2007, Physical review letters.

[9]  S. Heinemeyer,et al.  The Mass of the Lightest MSSM Higgs Boson: A Compact Analytical Expression at the Two-Loop Level , 1999, hep-ph/9903404.

[10]  H. Nilles,et al.  Supersymmetry, Supergravity and Particle Physics , 1984 .

[11]  Neutralino dark matter in focus point supersymmetry , 2000, hep-ph/0004043.

[12]  Search for dark matter with GLAST , 2002, astro-ph/0211327.

[13]  Lars Bergström,et al.  Radiative Processes in Dark Matter Photino Annihilation , 1989 .

[14]  Edward J. Wollack,et al.  Wilkinson Microwave Anisotropy Probe (WMAP) Three Year Results: Implications for Cosmology , 2006, astro-ph/0603449.

[15]  S. Hundertmark IceCube—neutrino astronomy at South Pole , 2006 .

[16]  S. White,et al.  A Universal Density Profile from Hierarchical Clustering , 1996, astro-ph/9611107.

[17]  Michael Gustafsson,et al.  Gamma rays from heavy neutralino dark matter. , 2005, Physical review letters.

[18]  P. O. Hulth,et al.  Limits on the muon flux from neutralino annihilations at the center of the Earth with AMANDA , 2006 .

[19]  S. Ferrara,et al.  Gauge models with spontaneously broken local supersymmetry , 1982 .

[20]  K. Olive,et al.  Radiative processes in LSP annihilation , 1989 .

[21]  R. Arnowitt,et al.  Locally Supersymmetric Grand Unification , 1982 .

[22]  Linear collider capabilities for supersymmetry in dark matter allowed region , 2003, hep-ph/0311351.

[23]  Updated Constraints on the Minimal Supergravity Model , 2002 .

[24]  Jonathan L. Feng,et al.  Supernatural supersymmetry: Phenomenological implications of anomaly-mediated supersymmetry breaking , 1999, hep-ph/9907319.

[25]  Focus points and naturalness in supersymmetry , 1999, hep-ph/9909334.

[26]  J. Silk,et al.  Quark flavours and the γ-ray spectrum from halo dark matter annihilations , 1990 .

[27]  Two photon annihilation of Kaluza-Klein dark matter , 2004, hep-ph/0412001.

[28]  J. Hisano,et al.  Nonperturbative effect on dark matter annihilation and gamma ray signature from the galactic center , 2004, hep-ph/0412403.

[29]  F. Paige,et al.  ISAJET 7.40: A Monte Carlo event generator for p p, anti-p p, and e+ e- reactions , 1998 .

[30]  G. Bertone,et al.  Particle dark matter: Evidence, candidates and constraints , 2004, hep-ph/0404175.

[31]  F. Gianotti,et al.  Proposed Post-LEP benchmarks for supersymmetry , 2001, hep-ph/0106204.

[32]  M. Simon,et al.  PAMELA: A payload for antimatter matter exploration and light-nuclei astrophysics - status and first results , 2006, IEEE Nuclear Science Symposium Conference Record.

[33]  L. Bergstrom,et al.  DarkSUSY: Computing Supersymmetric Dark Matter Properties Numerically , 2004 .

[34]  D. Roy,et al.  Looking for a heavy W-ino lightest supersymmetric particle in collider and dark matter experiments , 2007 .

[35]  W. Press,et al.  Capture by the sun of a galactic population of weakly interacting massive particles , 1985 .

[36]  S. Theisen,et al.  Cosmic quarkonium: A probe of dark matter. , 1986, Physical review letters.

[37]  Gamma‐ray signatures for Kaluza‐Klein dark matter , 2006, astro-ph/0609510.

[38]  Increasing the neutralino relic abundance with slepton coannihilations: consequences for indirect dark matter detection , 2006, hep-ph/0609290.

[39]  Hitoshi Murayama,et al.  Gaugino mass without singlets , 1998 .

[40]  H. Quintana,et al.  Dynamical interactions and astrophysical effects of stable heavy neutrinos. , 1978 .

[41]  Looking for a heavy higgsino LSP in collider and dark matter experiments , 2005, hep-ph/0508098.

[42]  Supersymmetric dark matter in light of WMAP , 2003, hep-ph/0303043.

[43]  Accurate relic densities with neutralino, chargino and sfermion coannihilations in mSUGRA , 2003, hep-ph/0301106.

[44]  K. Griest,et al.  Supersymmetric dark matter , 1992 .

[45]  Shigeki Matsumoto,et al.  Explosive dark matter annihilation. , 2003, Physical review letters.

[46]  Determination of Dark Matter Properties at High-Energy Colliders , 2006, hep-ph/0602187.

[47]  S. Heinemeyer,et al.  QCD corrections to the masses of the neutralCP-even Higgs bosons in the minimal supersymmetric standard model , 1998 .

[48]  J. Silk,et al.  Cosmic-ray antiprotons as a probe of a photino-dominated universe , 1984 .

[49]  Neutralino annihilation into a photon and a Z boson , 1997, hep-ph/9707333.

[50]  S. Mrenna,et al.  Pythia 6.3 physics and manual , 2003, hep-ph/0308153.

[51]  N. Ohta Grand Unified Theories Based on Local Supersymmetry , 1983 .

[52]  John Ellis,et al.  Supersymmetric dark matter in the light of CERN LEP and the Fermilab Tevatron collider , 2000 .

[53]  Lars Bergström,et al.  Non-baryonic dark matter: observational evidence and detection methods , 2000 .

[54]  Lisa Randall,et al.  Out of this world supersymmetry breaking , 1999 .

[55]  Miao Li,et al.  Gravitational Radiation of Rolling Tachyon , 2002 .

[56]  Multi-TeV scalars are natural in minimal supergravity , 1999, Physical review letters.

[57]  Neil Gehrels,et al.  GLAST: The Next-Generation High-Energy Gamma-Ray Astronomy Mission , 1999 .

[58]  C. Winant,et al.  First results from the XENON10 dark matter experiment at the Gran Sasso National Laboratory. , 2007, Physical review letters.

[59]  J. Silk,et al.  The photino, the sun, and high-energy neutrinos. , 1985, Physical review letters.

[60]  S. Heinemeyer,et al.  The masses of the neutral ${\cal CP}$-even Higgs bosons in the MSSM: Accurate analysis at the two-loop level , 1998, hep-ph/9812472.

[61]  L. Bergstrom,et al.  Observability of γ rays from dark matter neutralino annihilations in the Milky Way halo , 1998 .

[62]  Michael Kuhlen,et al.  Dark Matter Substructure and Gamma-Ray Annihilation in the Milky Way Halo , 2006, astro-ph/0611370.

[63]  Gamma rays from Kaluza-Klein dark matter. , 2004, Physical review letters.