Splitting over nilpotent and hypercentral residuals

It is a well known theorem of Gaschütz (4) and Schenkman (12) that if G is a finite group whose nilpotent residual A is Abelian, then G splits over A and the complements to A in G are conjugate. Following Robinson (10) we describe this situation by saying that G splits conjugately over A. A number of generalizations of this result have since been obtained, some of them being in the context of the formation theory of finite or locally finite groups (see, for example, (1), (3)) and others, for example, the recent and far-reaching results of Robinson (10, 11) being concerned with groups which are not necessarily periodic. Our results here are of the latter type.