A Two-Stage Probit Model for Predicting Recovery Rates

We propose a two-stage probit model (TPM) to predict recovery rates. By the ordinal nature of the three categories of recovery rates: total loss, total recovery, and lying between the two extremes, we first use the ordered probit model to predict the category that a given debt belongs to among the three ones. Then, for the debt that is classified as lying between the two extremes, we use the probit transformation regression to predict its recovery rate. We use real data sets to support TPM. Our empirical results show that macroeconomic-, debt-, firm-, and industry-specific variables are all important in determining recovery rates. Using an expanding rolling window approach, our empirical results confirm that TPM has better and more robust out-of-sample performance than its alternatives, in the sense of yielding more accurate predicted recovery rates.

[1]  W. Stahel,et al.  Using The Censored Gamma Distribution for Modeling Fractional Response Variables with an Application to Loss Given Default , 2010, 1011.1796.

[2]  João A. Bastos Forecasting bank loans loss-given-default , 2010 .

[3]  R. Kaplan,et al.  Statistical Models of Bond Ratings: A Methodological Inquiry , 1979 .

[4]  Jack C. Lee,et al.  A semiparametric method for predicting bankruptcy , 2007 .

[5]  A. Agresti Categorical data analysis , 1993 .

[6]  John Aitchison,et al.  THE GENERALIZATION OF PROBIT ANALYSIS TO THE CASE OF MULTIPLE RESPONSES , 1957 .

[7]  Sreedhar T. Bharath,et al.  Does Industry-Wide Distress Affect Defaulted Firms? Evidence from Creditor Recoveries , 2007 .

[8]  Edward I. Altman,et al.  FINANCIAL RATIOS, DISCRIMINANT ANALYSIS AND THE PREDICTION OF CORPORATE BANKRUPTCY , 1968 .

[9]  Tom Fawcett,et al.  An introduction to ROC analysis , 2006, Pattern Recognit. Lett..

[10]  Sreedhar T. Bharath,et al.  Forecasting Default with the Merton Distance to Default Model , 2008 .

[11]  M. Zenga,et al.  Bank loan recovery rates: Measuring and nonparametric density estimation , 2010 .

[12]  Craig Friedman,et al.  Estimating Conditional Probability Distributions of Recovery Rates: A Utility-Based Approach , 2006 .

[13]  Sudheer Chava,et al.  Modeling the Loss Distribution , 2011, Manag. Sci..

[14]  J. Crook,et al.  Loss given default models incorporating macroeconomic variables for credit cards , 2012 .

[15]  C. K. Chu,et al.  Predicting issuer credit ratings using a semiparametric method , 2010 .

[16]  S. Ferrari,et al.  Beta Regression for Modelling Rates and Proportions , 2004 .

[17]  Vani K. Borooah,et al.  Logit and Probit , 2002 .

[18]  Ruey-Ching Hwang,et al.  A varying-coefficient default model , 2012 .

[19]  P. Sengupta,et al.  Effect of Corporate Governance on Bond Ratings and Yields: The Role of Institutional Investors and Outside Directors , 2001 .

[20]  B. Baesens,et al.  Benchmarking regression algorithms for loss given default modeling , 2012 .

[21]  A. Mackinlay,et al.  The Declining Credit Quality of U.S. Corporate Debt: Myth or Reality? , 1998 .

[22]  S. Caselli,et al.  The Sensitivity of the Loss Given Default Rate to Systematic Risk: New Empirical Evidence on Bank Loans , 2008 .

[23]  M. Qi,et al.  Comparison of modeling methods for Loss Given Default , 2011 .

[24]  Raydonal Ospina,et al.  Inflated beta distributions , 2007, 0705.0700.

[25]  Donald P. Cram,et al.  Assessing the Probability of Bankruptcy , 2002 .

[26]  Wolfgang Härdle,et al.  Graphical Data Representation in Bankruptcy Analysis , 2006 .

[27]  J. Campbell,et al.  In Search of Distress Risk , 2006, SSRN Electronic Journal.

[28]  P. McCullagh Regression Models for Ordinal Data , 1980 .

[29]  Hedley Rees,et al.  Limited-Dependent and Qualitative Variables in Econometrics. , 1985 .

[30]  Leif B. G. Andersen,et al.  Extensions to the Gaussian Copula: Random Recovery and Random Factor Loadings , 2005 .

[31]  Cheng-Few Lee,et al.  On multiple-class prediction of issuer credit ratings , 2009 .

[32]  E. Altman,et al.  Ultimate recovery mixtures , 2014 .

[33]  E. Altman,et al.  Almost Everything You Wanted to Know about Recoveries on Defaulted Bonds , 1996 .

[34]  Raffaella Calabrese,et al.  Predicting bank loan recovery rates with a mixed continuous-discrete model , 2014 .

[35]  Jeffrey M. Wooldridge,et al.  Solutions Manual and Supplementary Materials for Econometric Analysis of Cross Section and Panel Data , 2003 .

[36]  Susan G. Watts,et al.  Bankruptcy classification errors in the 1980s: An empirical analysis of Altman's and Ohlson's models , 1996 .

[37]  Yuri Yashkir,et al.  Loss Given Default Modeling: a Comparative Analysis , 2013 .