Binary words with a given Diophantine exponent
暂无分享,去创建一个
[1] Gheorghe Paun,et al. Jewels are Forever, Contributions on Theoretical Computer Science in Honor of Arto Salomaa , 1999 .
[2] Jeffrey Shallit,et al. Every real number greater than 1 is a critical exponent , 2007, Theor. Comput. Sci..
[3] Y. Bugeaud,et al. Dynamics for β-shifts and Diophantine approximation , 2007, Ergodic Theory and Dynamical Systems.
[4] Y. Bugeaud,et al. On the complexity of algebraic numbers , II . Continued fractions by , 2006 .
[5] R. C. ENTRINGER,et al. On Nonrepetitive Sequences , 1974, J. Comb. Theory, Ser. A.
[6] Filippo Mignosi,et al. Repetitions in the Fibonacci infinite word , 1992, RAIRO Theor. Informatics Appl..
[7] Y. Bugeaud,et al. On the complexity of algebraic numbers I. Expansions in integer bases , 2005, math/0511674.
[8] Jean Berstel,et al. On the Index of Sturmian Words , 1999, Jewels are Forever.
[9] Julien Cassaigne. On extremal properties of the Fibonacci word , 2008, RAIRO Theor. Informatics Appl..
[10] Y. Bugeaud,et al. Nombres réels de complexité sous-linéaire : mesures d'irrationalité et de transcendance , 2011 .
[11] Powers of a rational number modulo 1 cannot lie in a small interval , 2009 .
[12] G. Paun,et al. Jewels are Forever , 1999, Springer Berlin Heidelberg.
[13] J. Cassaigne,et al. Diophantine properties of real numbers generated by finite automata , 2006, Compositio Mathematica.
[14] James D. Currie,et al. For each α > 2 there is an Infinite Binary Word with Critical Exponent α , 2008, Electron. J. Comb..
[15] A. M. Shur,et al. The structure of the set of cube-free $ Z$-words in a two-letter alphabet , 2000 .
[16] Dalia Krieger. On Critical Exponents in Fixed Points of Non-erasing Morphisms , 2006, Developments in Language Theory.
[17] B. Adamczewski. On the expansion of some exponential periods in an integer base , 2012, 1205.0961.
[18] Drew Vandeth,et al. Sturmian words and words with a critical exponent , 2000, Theor. Comput. Sci..
[19] Valérie Berthé,et al. Initial powers of Sturmian sequences , 2006 .
[20] Jeffrey Shallit,et al. Binary Words Containing Infinitely Many Overlaps , 2006, Electron. J. Comb..