Human immunodeficiency virus type 1 protease (HIV-1 PR) is one of the proteins that currently available anti-HIV-1 drugs target. Inhibitors of HIV-1 PR have become available, and they have lowered the rate of mortality from acquired immune deficiency syndrome (AIDS) in advanced countries. However, the rate of emergence of drug-resistant HIV-1 variants is quite high because of their short retroviral life cycle and their high mutation rate. Serious drug-resistant mutations against HIV-1 PR inhibitors (PIs) frequently appear at the active site of PR. Exceptionally, some other mutations such as L90M cause drug resistance, although these appear at nonactive sites. The mechanism of resistance due to nonactive site mutations is difficult to explain. In this study, we carried out computational simulations of L90M PR in complex with each of three kinds of inhibitors and one typical substrate, and we clarified the mechanism of resistance. The L90M mutation causes changes in interaction between the side chain atoms of the 90th residue and the main chain atoms of the 25th residue, and a slight dislocation of the 25th residue causes rotation of the side chain at the 84th residue. The rotation of the 84th residue leads to displacement of the inhibitor from the appropriate binding location, resulting in a collision with the flap or loop region. The difference in levels of resistance to the three inhibitors has been explained from energetic and structural viewpoints, which provides the suggestion for promising drugs keeping its efficacy even for the L90M mutant.