Induced electroweak symmetry breaking and supersymmetric naturalness

In this paper we study a new class of supersymmetric models that can explain a 125 GeV Higgs without fine-tuning. These models contain additional `auxiliary Higgs' fields with large tree-level quartic interaction terms but no Yukawa couplings. These have electroweak-breaking vacuum expectation values, and contribute to the VEVs of the MSSM Higgs fields either through an induced quartic or through an induced tadpole. The quartic interactions for the auxiliary Higgs fields can arise from either D-terms or F-terms. The tadpole mechanism has been previously studied in strongly-coupled models with large D-terms, referred to as `superconformal technicolor.' The perturbative models studied here preserve gauge coupling unification in the simplest possible way, namely that all new fields are in complete SU(5) multiplets. The models are consistent with the observed properties of the 125 GeV Higgs-like boson as well as precision electroweak constraints, and predict a rich phenomenology of new Higgs states at the weak scale. The tuning is less than 10% in almost all of the phenomenologically allowed parameter space. If electroweak symmetry is broken by an induced tadpole, the cubic and quartic Higgs self-couplings are significantly smaller than in the standard model.

[1]  Florian Staub,et al.  Automatic calculation of supersymmetric renormalization group equations and loop corrections , 2010, Comput. Phys. Commun..

[2]  A. Pomarol,et al.  A distorted MSSM Higgs sector from low-scale strong dynamics , 2011, 1107.4697.

[3]  Higgs as a holographic pseudo-Goldstone boson , 2003, hep-ph/0306259.

[4]  A. Azatov,et al.  Superconformal technicolor. , 2011, Physical review letters.

[5]  Andreas Papaefstathiou,et al.  Higgs boson self-coupling measurements using ratios of cross sections , 2013, 1301.3492.

[6]  Howard Georgi,et al.  Electroweak symmetry breaking from dimensional deconstruction , 2001, hep-ph/0105239.

[7]  N. Craig,et al.  A fat Higgs with a magnetic personality , 2011, 1106.2164.

[8]  The exact superconformal R-symmetry maximizes a , 2003, hep-th/0304128.

[9]  Spencer Chang,et al.  New fat Higgs: Increasing the MSSM Higgs mass with natural gauge unification , 2005 .

[10]  The Cms Collaboration Observation of a new boson at a mass of 125 GeV with the CMS experiment at the LHC , 2012, 1207.7235.

[11]  Jin Min Yang,et al.  Current experimental constraints on NMSSM with large lambda , 2008, 0810.0989.

[12]  Roberto Contino,et al.  The Minimal Composite Higgs Model , 2005 .

[13]  M. Baak,et al.  The electroweak fit of the standard model after the discovery of a new boson at the LHC , 2012, The European Physical Journal C.

[14]  V. M. Ghete,et al.  Search for a standard-model-like Higgs boson with a mass in the range 145 to 1000 GeV at the LHC , 2013, The European Physical Journal C.

[15]  R. Franceschini,et al.  Supersymmetry without a light Higgs boson at the CERN LHC , 2007, 0710.5750.

[16]  Ryszard S. Romaniuk,et al.  Observation of a new boson at a mass of 125 GeV with the CMS experiment at the LHC , 2012 .

[17]  A. Strumia,et al.  Probing High-Scale and Split Supersymmetry with Higgs Mass Measurements , 2011, 1108.6077.

[18]  D. Pappadopulo,et al.  A non standard supersymmetric spectrum , 2010, 1004.2256.

[19]  G. Giudice,et al.  Erratum to: "Split supersymmetry" [Nucl. Phys. B 699 (2004) 65] , 2004, hep-ph/0406088.

[20]  M. Strassler Generating a fermion mass hierarchy in a composite supersymmetric standard model , 1995, hep-ph/9510342.

[21]  A. Brignole Radiative corrections to the supersymmetric neutral Higgs boson masses , 1992 .

[22]  A. Nelson,et al.  The Littlest Higgs , 2002, hep-ph/0206021.

[23]  Arpit Gupta,et al.  Simply Unnatural Supersymmetry , 2012, 1212.6971.

[24]  Takeuchi,et al.  Estimation of oblique electroweak corrections. , 1992, Physical review. D, Particles and fields.

[25]  H. Haber,et al.  Basis-independent methods for the two-Higgs-doublet model III: The CP-conserving limit, custodial symmetry, and the oblique parameters S, T, U , 2010, 1011.6188.

[26]  A. Azatov,et al.  Superconformal technicolor: Models and phenomenology , 2011, 1106.4815.

[27]  Vaughn,et al.  Two-loop renormalization group equations for soft supersymmetry-breaking couplings. , 1994, Physical review. D, Particles and fields.

[28]  Electric-magnetic duality in supersymmetric non-Abelian gauge theories , 1994, hep-th/9411149.

[29]  Patrick J. Fox,et al.  Supersymmetry with a sister Higgs boson , 2012, 1207.5522.

[30]  Yasuhiro Okada,et al.  Upper bound of the lightest Higgs boson mass in the minimal supersymmetric standard model , 1991 .

[31]  Florian Staub,et al.  From superpotential to model files for FeynArts and CalcHep/CompHep , 2009, Comput. Phys. Commun..

[32]  P. Lodone Naturalness bounds in extensions of the MSSM without a light Higgs boson , 2010, 1004.1271.

[33]  Scott D. Thomas,et al.  Searching for Signs of the Second Higgs Doublet , 2013, 1305.2424.

[34]  Matthew J. Dolan,et al.  Higgs self-coupling measurements at the LHC , 2012, 1206.5001.

[35]  JiJi Fan,et al.  Stealth supersymmetry , 2011, 1105.5135.

[36]  R. Barbieri,et al.  Upper Bounds on Supersymmetric Particle Masses , 1988 .

[37]  David E. Kaplan,et al.  The Higgs mass bound in gauge extensions of the minimal supersymmetric standard model , 2003 .

[38]  Takeuchi,et al.  New constraint on a strongly interacting Higgs sector. , 1990, Physical review letters.

[39]  J. Wacker,et al.  D-terms, unification, and the Higgs mass , 2004, hep-ph/0409127.

[40]  James D. Wells Implications of Supersymmetry Breaking with a Little Hierarchy between Gauginos and Scalars , 2003 .

[41]  H. Nilles,et al.  Weak interaction breakdown induced by supergravity , 1983 .

[42]  R. Lafaye,et al.  Measuring Higgs couplings from LHC data. , 2012, Physical review letters.

[43]  R. Franceschini,et al.  Solving the μ problem with a heavy Higgs boson , 2010, 1005.1070.

[44]  J. Ellis,et al.  On radiative corrections to supersymmetric Higgs boson masses and their implications for LEP searches , 1991 .

[45]  M. Carena,et al.  Analytical expressions for radiatively corrected Higgs masses and couplings in the MSSM , 1995 .

[46]  J. Wacker,et al.  Little Higgs models and custodial SU ( 2 ) , 2003, hep-ph/0303001.

[47]  Savas Dimopoulos,et al.  Supersymmetric unification without low energy supersymmetry and signatures for fine-tuning at the LHC , 2004, hep-th/0405159.

[48]  C. Vafa,et al.  Electroweak symmetry breaking in the DSSM , 2011, 1108.3849.

[49]  Ellis,et al.  Higgs bosons in a nonminimal supersymmetric model. , 1989, Physical review. D, Particles and fields.

[50]  N. Seiberg,et al.  Lectures on supersymmetric gauge theories and electric-magnetic duality , 1995 .

[51]  Relaxing the upper bound on the mass of the lightest supersymmetric Higgs boson , 2004, hep-ph/0408329.

[52]  A. Azatov,et al.  Electroweak Symmetry Breaking and the Higgs Boson: Confronting Theories at Colliders , 2012, 1212.1380.

[53]  L. Hall,et al.  A natural SUSY Higgs near 125 GeV , 2011, 1112.2703.

[54]  Jin Min Yang,et al.  A SM-like Higgs near 125 GeV in low energy SUSY: a comparative study for MSSM and NMSSM , 2012, 1202.5821.

[55]  H. Haber,et al.  Can the mass of the lightest Higgs boson of the minimal supersymmetric model be larger than mZ? , 1991, Physical review letters.