LOCAL SOLVABILITY OF A CONSTRAINED GRADIENT SYSTEM OF TOTAL VARIATION

A 1-harmonic map flow equation, a gradient system of total variation where values of unknowns are constrained in a compact manifold in R^N is formulated by use of subd-ifferentials of a singular energy - the total variation. An abstract convergence result is established to show that solutions of approximate problem converge to a solution of the limit problem. As an application of our convergence result a local-in-time solution of 1-harmonic map flow equation is constructed as a limit of the solutions of p-harmonic (p > 1) map flow equation, when the initial data is smooth with small total variation under periodic boundary condition.

[1]  Masashi Misawa,et al.  On the p-harmonic flow into spheres in the singular case , 2002 .

[2]  Y. Kōmura,et al.  Nonlinear semi-groups in Hilbert space , 1967 .

[3]  V. Barbu Nonlinear Semigroups and di erential equations in Banach spaces , 1976 .

[4]  W. Carter,et al.  A continuum model of grain boundaries , 2000 .

[5]  Y. Giga,et al.  On Constrained Equations with Singular Diffusivity , 2003 .

[6]  Robert Hardt,et al.  An evolution problem for linear growth functionals , 1994 .

[7]  Yoshikazu Giga,et al.  Equations with Singular Diffusivity , 1998 .

[8]  Y. Giga,et al.  Evolving Graphs by Singular Weighted Curvature , 1998 .

[9]  Fuensanta Andreu Vaíllo,et al.  Existence and uniqueness of a solution for a parabolic quasilinear problem for linear growth functionals with $L^1$ data , 2002 .

[10]  S. Osher,et al.  Solving variational problems and partial differential equations mapping into general target manifolds , 2004 .

[11]  M. Novaga,et al.  The Total Variation Flow in RN , 2002 .

[12]  Ali Fardoun,et al.  Heat flow for p-harmonic maps with small initial data , 2003 .

[13]  Yoshikazu Giga,et al.  Very singular diffusion equations , 1999 .

[14]  C. Ballester,et al.  The Dirichlet Problem for the Total Variation Flow , 2001 .

[15]  V. Caselles,et al.  Minimizing total variation flow , 2000, Differential and Integral Equations.

[16]  Convergence de fonctionnelles convexes , 1978 .

[17]  Y. Giga Singular diffusivity facets, shocks and more , 2003 .

[18]  O. Ladyženskaja Linear and Quasilinear Equations of Parabolic Type , 1968 .

[19]  G. Sapiro,et al.  Geometric partial differential equations and image analysis [Book Reviews] , 2001, IEEE Transactions on Medical Imaging.

[20]  H. Brezis Opérateurs maximaux monotones et semi-groupes de contractions dans les espaces de Hilbert , 1973 .

[21]  Guillermo Sapiro,et al.  Color image enhancement via chromaticity diffusion , 2001, IEEE Trans. Image Process..

[22]  E. Giusti Minimal surfaces and functions of bounded variation , 1977 .

[23]  剣持 信幸 Solvability of Nonlinear Evolution Equations with Time-Dependent Constraints and Applications , 1981 .

[24]  M. Giaquinta,et al.  Variational problems for maps of bounded variation with values inS1 , 1993 .

[25]  Y. Giga,et al.  Stability for evolving graphs by nonlocal weighted curvature , 1997 .

[26]  K. Shirakawa Asymptotic convergence of p‐Laplace equationswith constraint as p tends to 1 , 2002 .

[27]  H. Attouch Variational convergence for functions and operators , 1984 .