Clustering interval-valued proximity data using belief functions

The problem of clustering objects based on interval-valued dissimilarities is tackled in the framework of the Dempster--Shafer theory of belief functions. The proposed method assigns to each object a basic belief assignment (or mass function) defined on the set of clusters, in such a way that the belief and the plausibility that any two objects belong to the same cluster reflect, respectively, the observed lower and upper dissimilarity values. Experiments with synthetic and real data sets demonstrate the ability of the method to detect meaningful clusters, even in the presence of imprecise data and outliers.

[1]  Thierry Denoeux,et al.  EVCLUS: evidential clustering of proximity data , 2004, IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics).

[2]  Hahn-Ming Lee,et al.  A multiclass neural network classifier with fuzzy teaching inputs , 1997, Fuzzy Sets Syst..

[3]  James M. Keller,et al.  Fuzzy Models and Algorithms for Pattern Recognition and Image Processing , 1999 .

[4]  Hans-Hermann Bock,et al.  Analysis of Symbolic Data , 2000 .

[5]  Philippe Smets,et al.  Belief functions: The disjunctive rule of combination and the generalized Bayesian theorem , 1993, Int. J. Approx. Reason..

[6]  P. Diamond,et al.  Fuzzy regression analysis , 1999 .

[7]  Anil K. Jain,et al.  Algorithms for Clustering Data , 1988 .

[8]  Forrest W. Young,et al.  Introduction to Multidimensional Scaling: Theory, Methods, and Applications , 1981 .

[9]  Thierry Denoeux,et al.  Multidimensional scaling of fuzzy dissimilarity data , 2002, Fuzzy Sets Syst..

[10]  T. Denœux,et al.  Clustering of proximity data using belief functions , 2003 .

[11]  Philippe Smets,et al.  The Combination of Evidence in the Transferable Belief Model , 1990, IEEE Trans. Pattern Anal. Mach. Intell..

[12]  James M. Keller,et al.  Analysis and efficient implementation of a linguistic fuzzy c-means , 2002, IEEE Trans. Fuzzy Syst..

[13]  S. Sen,et al.  Clustering of relational data containing noise and outliers , 1998, 1998 IEEE International Conference on Fuzzy Systems Proceedings. IEEE World Congress on Computational Intelligence (Cat. No.98CH36228).

[14]  Thierry Denoeux,et al.  Multidimensional scaling of interval-valued dissimilarity data , 2000, Pattern Recognit. Lett..

[15]  Rudolf Kruse,et al.  Fuzzy set-theoretic methods in statistics , 1999 .

[16]  Glenn Shafer,et al.  A Mathematical Theory of Evidence , 2020, A Mathematical Theory of Evidence.

[17]  Marie-Hélène Masson,et al.  Recovery of the metric structure of a pattern of points using minimal information , 2001, IEEE Trans. Syst. Man Cybern. Part A.

[18]  Mohamed A. Ismail,et al.  Fuzzy clustering for symbolic data , 1998, IEEE Trans. Fuzzy Syst..

[19]  Alessandro Saffiotti,et al.  The Transferable Belief Model , 1991, ECSQARU.

[20]  Hisao Ishibuchi,et al.  Learning by fuzzified neural networks , 1995, Int. J. Approx. Reason..

[21]  Witold Pedrycz,et al.  Linguistic neurocomputing: the design of neural networks in the framework of fuzzy sets , 2002, Fuzzy Sets Syst..

[22]  R. Słowiński Fuzzy sets in decision analysis, operations research and statistics , 1999 .

[23]  Hans-Hermann Bock,et al.  Analysis of Symbolic Data: Exploratory Methods for Extracting Statistical Information from Complex Data , 2000 .

[24]  J. Kruskal Nonmetric multidimensional scaling: A numerical method , 1964 .

[25]  Lawrence Mayer,et al.  Proximity and Preference: Problems in the Multidimensional Analysis of Large Data Sets , 1982 .

[26]  Yves Lechevallier,et al.  Dynamical Clustering of Interval Data: Optimization of an Adequacy Criterion Based on Hausdorff Distance , 2002 .

[27]  P. Groenen,et al.  Modern multidimensional scaling , 1996 .