Regularization and Search for Minimum Error Rate Training

Minimum error rate training (MERT) is a widely used learning procedure for statistical machine translation models. We contrast three search strategies for MERT: Powell's method, the variant of coordinate descent found in the Moses MERT utility, and a novel stochastic method. It is shown that the stochastic method obtains test set gains of +0.98 BLEU on MT03 and +0.61 BLEU on MT05. We also present a method for regularizing the MERT objective that achieves statistically significant gains when combined with both Powell's method and coordinate descent.