Tortuosity of porous media: Image analysis and physical simulation

Abstract Tortuosity is widely used as a critical parameter to predict transport properties of porous media, such as rocks and soils. But unlike other standard microstructural properties, the concept of tortuosity is vague with multiple definitions and various evaluation methods introduced in different contexts. Hydraulic, electrical, diffusional, and thermal tortuosities are defined to describe different transport processes in porous media, while geometrical tortuosity is introduced to characterize the morphological property of porous microstructures. In particular, the rapid development of microscopy imaging techniques has made digital microstructures of porous media increasingly accessible, from which geometrical and physical tortuosities can be evaluated using various image analysis and numerical simulation methods. These tortuosities are defined differently and can differ greatly in value, but in many works of literature, they are used interchangeably. To address this situation, we systematically examine geometrical, hydraulic, electrical, diffusional, and thermal tortuosities from the viewpoints of the definition and evaluation method. For the same porous medium, visible discrepancies are found in the evaluated geometrical and physical tortuosities, depending on the specific definition and the evaluation method adopted. This observation makes it questionable to directly use the geometrical tortuosity as a substitute for physical tortuosities, a common practice in the literature. Thus, the correlations between geometrical and physical tortuosities are further analyzed, which also takes into account the influence of both image size and resolution. From the correlation analysis, phenomenological relations between geometrical and physical tortuosities are established, so that the latter can be accurately predicted by using the former which is much cheaper to evaluate from digital microstructures.

[1]  Faruk Civan,et al.  Porous Media Transport Phenomena , 2011 .

[2]  Rangasami L. Kashyap,et al.  Building Skeleton Models via 3-D Medial Surface/Axis Thinning Algorithms , 1994, CVGIP Graph. Model. Image Process..

[3]  F. Marone,et al.  Resolution effect in X-ray microcomputed tomography imaging and small pore's contribution to permeability for a Berea sandstone , 2014 .

[4]  M. Ben Clennell,et al.  Tortuosity: a guide through the maze , 1997, Geological Society, London, Special Publications.

[5]  F. Javadpour Nanopores and Apparent Permeability of Gas Flow in Mudrocks (Shales and Siltstone) , 2009 .

[6]  P. Shearing,et al.  Three-dimensional high resolution X-ray imaging and quantification of lithium ion battery mesocarbon microbead anodes , 2014 .

[7]  One- and Two-Phase Permeabilities of Vugular Porous Media , 2004 .

[8]  W. B. Lindquist,et al.  Medial axis analysis of void structure in three-dimensional tomographic images of porous media , 1996 .

[9]  Pierre M. Adler,et al.  Porous media : geometry and transports , 1992 .

[10]  D. Wildenschild,et al.  X-ray imaging and analysis techniques for quantifying pore-scale structure and processes in subsurface porous medium systems , 2013 .

[11]  R. Hilfer Review on Scale Dependent Characterization of the Microstructure of Porous Media , 2001, cond-mat/0105458.

[12]  Gioacchino Viggiani,et al.  Advances in X-ray Tomography for Geomaterials , 2006 .

[13]  B. Münch,et al.  The influence of constrictivity on the effective transport properties of porous layers in electrolysis and fuel cells , 2013, Journal of Materials Science.

[14]  Emmanuel Brun,et al.  iMorph : A 3 D morphological tool to fully analyze all kind of cellular materials , 2009 .

[15]  Antti I. Koponen,et al.  Tortuous flow in porous media. , 1996, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[16]  A. Duda,et al.  Hydraulic tortuosity in arbitrary porous media flow. , 2011, Physical review. E, Statistical, nonlinear, and soft matter physics.

[17]  Ahmet H. Aydilek,et al.  Laboratory validation of lattice Boltzmann method for modeling pore-scale flow in granular materials , 2006 .

[18]  P. Carrette,et al.  Tortuosity of mesoporous alumina catalyst supports: Influence of the pore network organization , 2017 .

[19]  Marc-Olivier Coppens,et al.  Knudsen self- and Fickian diffusion in rough nanoporous media , 2003 .

[20]  Walter Rose,et al.  Some Theoretical Considerations Related To The Quantitative Evaluation Of The Physical Characteristics Of Reservoir Rock From Electrical Log Data , 1950 .

[21]  Lorenz Holzer,et al.  Contradicting Geometrical Concepts in Pore Size Analysis Attained with Electron Microscopy and Mercury Intrusion , 2008 .

[22]  Ming Zhou,et al.  Gas transport in porous electrodes of solid oxide fuel cells: A review on diffusion and diffusivity measurement , 2013 .

[23]  Sri Niwas,et al.  Estimation of hydraulic parameters of shaly sandstone aquifers from geoelectrical measurements , 2000 .

[24]  M. Blunt,et al.  Pore-scale imaging and modelling , 2013 .

[25]  Francesco Panerai,et al.  PuMA: the Porous Microstructure Analysis software , 2018, SoftwareX.

[26]  Paul E. Stutzman,et al.  Scanning electron microscopy imaging of hydraulic cement microstructure , 2004 .

[27]  S. Prachayawarakorn,et al.  Effects of pore assembly architecture on catalyst particle tortuosity and reaction effectiveness , 2007 .

[28]  D. A. G. Bruggeman Berechnung verschiedener physikalischer Konstanten von heterogenen Substanzen. I. Dielektrizitätskonstanten und Leitfähigkeiten der Mischkörper aus isotropen Substanzen , 1935 .

[29]  D. Finegan,et al.  Contradictory concepts in tortuosity determination in porous media in electrochemical devices , 2017 .

[30]  Martin Ebner,et al.  Validity of the Bruggeman relation for porous electrodes , 2013 .

[31]  Maria Isabella Gariboldi,et al.  Effect of Ceramic Scaffold Architectural Parameters on Biological Response , 2015, Front. Bioeng. Biotechnol..

[32]  N. Otsu A threshold selection method from gray level histograms , 1979 .

[33]  Joanne T. Fredrich,et al.  Predicting macroscopic transport properties using microscopic image data , 2005 .

[34]  M. Yavuz Corapcioglu,et al.  Advances in Porous Media , 1996 .

[35]  Peter M. A. Sloot,et al.  Tortuosity of an Unsaturated Sandy Soil Estimated using Gas diffusion and Bulk Soil Electrical Conductivity: Comparing analogy-based Models and Lattice-Boltzmann Simulatons , 2001 .

[36]  Stina Svensson,et al.  3D pore structure characterisation of paper , 2010, Pattern Analysis and Applications.

[37]  A. Garrouch,et al.  Using diffusion and electrical measurements to assess tortuosity of porous media , 2001 .

[38]  Surya R. Kalidindi,et al.  3-D Microstructure Analysis of Fuel Cell Materials: Spatial Distributions of Tortuosity, Void Size and Diffusivity , 2012 .

[39]  P. M. Heertjes,et al.  Analysis of diffusion in macroporous media in terms of a porosity, a tortuosity and a constrictivity factor , 1974 .

[40]  Keith W. Jones,et al.  Synchrotron computed microtomography of porous media: Topology and transports. , 1994, Physical review letters.

[41]  E. Wachsman,et al.  Evaluation of the relationship between cathode microstructure and electrochemical behavior for SOFCs , 2009 .

[42]  Pierre M. Adler,et al.  Computerized characterization of the geometry of real porous media: their discretization, analysis and interpretation , 1993 .

[43]  Jussi Timonen,et al.  Permeability and effective porosity of porous media , 1997 .

[44]  Zhaoli Guo,et al.  A LATTICE BOLTZMANN MODEL FOR CONVECTION HEAT TRANSFER IN POROUS MEDIA , 2005 .

[45]  Y. Keehm,et al.  Permeability And Relative Permeability From Digital Rocks: Issues On Grid Resolution And Representative Elementary Volume , 2004 .

[46]  J. Bear,et al.  Introduction to Modeling of Transport Phenomena in Porous Media , 1990 .

[47]  D. Owen,et al.  Resolution Effect: An Error Correction Model for Intrinsic Permeability of Porous Media Estimated from Lattice Boltzmann Method , 2020, Transport in Porous Media.

[48]  V. S. Vaidhyanathan,et al.  Transport phenomena , 2005, Experientia.

[49]  Nigel P. Brandon,et al.  Microstructural Analysis of an LSCF Cathode Using In Situ Tomography and Simulation Modeling and Simulation , 2013 .

[50]  Stephen R. Cattle,et al.  Linking hydraulic conductivity and tortuosity parameters to pore space geometry and pore-size distribution , 2003 .

[51]  P. Schjønning,et al.  Tortuosity, diffusivity, and permeability in the soil liquid and gaseous phases , 2001 .

[52]  Andrew V. Goldberg,et al.  Shortest paths algorithms: Theory and experimental evaluation , 1994, SODA '94.

[53]  Andreas Wiegmann,et al.  EJ-HEAT: A Fast Explicit Jump Harmonic Averaging Solver for the Effective Heat Conductivity of Composite Materials , 2006 .

[54]  Pieter Vermeesch,et al.  Quantifying the anisotropy and tortuosity of permeable pathways in clay-rich mudstones using models based on X-ray tomography , 2017, Scientific Reports.

[55]  M. Sahimi,et al.  Tortuosity in Porous Media: A Critical Review , 2013 .

[56]  W. O. Winsauer,et al.  Resistivity of Brine-Saturated Sands in Relation to Pore Geometry , 1952 .

[57]  Christoph H. Arns,et al.  Porous Media Characterization Using Minkowski Functionals: Theories, Applications and Future Directions , 2018, Transport in Porous Media.

[58]  Rui Chen,et al.  3D reconstruction of a gas diffusion layer and a microporous layer , 2010 .

[59]  Riyadh I. Al-Raoush,et al.  TORT3D: A MATLAB code to compute geometric tortuosity from 3D images of unconsolidated porous media , 2017 .

[60]  Gianni Schena,et al.  Analysis of Hydraulic Permeability in Porous Media: From High Resolution X-ray Tomography to Direct Numerical Simulation , 2009 .

[61]  Jeff Gostick,et al.  pytrax: A simple and efficient random walk implementation for calculating the directional tortuosity of images , 2019, SoftwareX.

[62]  M. Renaud,et al.  Transport phenomena in multi-particle systems—I. Limits of applicability of capillary model in high voidage beds-application to fixed beds of fibers and fluidized beds of spheres , 1997 .

[63]  Nigel P. Brandon,et al.  TauFactor: An open-source application for calculating tortuosity factors from tomographic data , 2016, SoftwareX.

[64]  WaiChing Sun,et al.  Prediction of permeability and formation factor of sandstone with hybrid lattice Boltzmann/finite element simulation on microtomographic images , 2018, International Journal of Rock Mechanics and Mining Sciences.

[65]  S. Cooper,et al.  Quantifying the transport properties of solid oxide fuel cell electrodes , 2015 .

[66]  C. Berg Permeability Description by Characteristic Length, Tortuosity, Constriction and Porosity , 2014, Transport in Porous Media.

[67]  Karsten E. Thompson,et al.  Effects of image resolution and numerical resolution on computed permeability of consolidated packing using LB and FEM pore-scale simulations , 2013 .

[68]  Chris Pudney,et al.  Distance-Ordered Homotopic Thinning: A Skeletonization Algorithm for 3D Digital Images , 1998, Comput. Vis. Image Underst..

[69]  P. Carman Fluid flow through granular beds , 1997 .

[70]  Z. Koza,et al.  Tortuosity-porosity relation in porous media flow. , 2008, Physical review. E, Statistical, nonlinear, and soft matter physics.

[71]  J C Vassilicos,et al.  Transport properties of saturated and unsaturated porous fractal materials. , 2008, Physical review letters.

[72]  J. Masliyah,et al.  Flow through isotropic granular porous media , 1991 .

[73]  D. Hillel Introduction to environmental soil physics , 1982 .

[74]  Bruce D. Jones,et al.  Effect of image scaling and segmentation in digital rock characterisation , 2015, Computational Particle Mechanics.

[75]  H. Saomoto,et al.  Direct comparison of hydraulic tortuosity and electric tortuosity based on finite element analysis , 2015 .

[76]  D. Stephenson,et al.  Direct Measurements of Effective Ionic Transport in Porous Li-Ion Electrodes , 2013 .

[77]  R. Olives,et al.  A Highly Conductive Porous Medium for Solid–Gas Reactions: Effect of the Dispersed Phase on the Thermal Tortuosity , 2001 .

[78]  J. Bowen,et al.  Geometrical characterization of interconnected phase networks in three dimensions , 2011, Journal of microscopy.

[79]  Norman Epstein,et al.  On tortuosity and the tortuosity factor in flow and diffusion through porous media , 1989 .

[80]  Bo Barker Jørgensen,et al.  Diffusion coefficients of sulfate and methane in marine sediments: Influence of porosity , 1993 .

[81]  G. E. Archie The electrical resistivity log as an aid in determining some reservoir characteristics , 1942 .

[82]  Cato T Laurencin,et al.  Tissue engineered bone: measurement of nutrient transport in three-dimensional matrices. , 2003, Journal of biomedical materials research. Part A.

[83]  Volker Schmidt,et al.  Predicting Effective Conductivities Based on Geometric Microstructure Characteristics , 2016 .

[84]  Ioannis Chatzis,et al.  Electrical Conductivity and Percolation Aspects of Statistically Homogeneous Porous Media , 1997 .

[85]  Bernhard Tjaden,et al.  Investigating microstructural evolution during the electroreduction of UO2 to U in LiCl-KCl eutectic using focused ion beam tomography , 2016 .

[86]  Yaodong Jiang,et al.  Pore Structure Characterization of Coal by Synchrotron Small-Angle X‑ray Scattering and Transmission Electron Microscopy , 2014 .

[87]  M. Tuller,et al.  Gas Diffusion-Derived Tortuosity Governs Saturated Hydraulic Conductivity in Sandy Soils , 2014 .

[88]  P. Carman,et al.  Flow of gases through porous media , 1956 .

[89]  Hiroshi Iwai,et al.  Improvement of the sub-grid-scale model designed for 3D numerical simulation of solid oxide fuel cell electrodes using an adaptive power index , 2013 .

[90]  Xiaojiao Pang,et al.  A review on pore structure characterization in tight sandstones , 2018 .

[91]  O. Vizika,et al.  Macroscopic Conductivity of Vugular Porous Media , 2002 .

[92]  E. A. Wargo,et al.  Comparison of focused ion beam versus nano-scale X-ray computed tomography for resolving 3-D microstructures of porous fuel cell materials , 2013 .

[93]  O. Lima Water saturation and permeability from resistivity, dielectric, and porosity logs , 1995 .

[94]  WaiChing Sun,et al.  Multiscale method for characterization of porous microstructures and their impact on macroscopic effective permeability , 2011 .

[95]  M. R. J. Wyllie,et al.  Application of Electrical Resistivity Measurements to Problem of Fluid Flow in Porous Media , 1952 .

[96]  Simon P. Ringer,et al.  Microstructural Evolution and Age Hardening in Aluminium Alloys: Atom Probe Field-Ion Microscopy and Transmission Electron Microscopy Studies , 2000 .

[97]  Oluwadamilola O. Taiwo,et al.  Characterising the structural properties of polymer separators for lithium-ion batteries in 3D using phase contrast X-ray microscopy , 2016 .

[98]  C. David,et al.  Geometry of flow paths for fluid transport in rocks , 1993 .

[99]  F. Bini,et al.  A 3D Model of the Effect of Tortuosity and Constrictivity on the Diffusion in Mineralized Collagen Fibril , 2019, Scientific Reports.

[100]  William R. Bowen,et al.  Binary spherical particle mixed beds : porosity and permeability relationship measurement , 2001 .

[101]  E. Boek,et al.  Micro-computed tomography pore-scale study of flow in porous media: Effect of voxel resolution , 2016 .

[102]  J. Vicente,et al.  Geometrical Tortuosity 3D Calculations in Infiltrated Aluminium Cellular Materials , 2014 .

[103]  Cédric Gommes,et al.  Practical methods for measuring the tortuosity of porous materials from binary or gray‐tone tomographic reconstructions , 2009 .

[104]  Shmulik P. Friedman,et al.  Theoretical Prediction of Electrical Conductivity in Saturated and Unsaturated Soil , 1991 .

[105]  Joel L. Plawsky,et al.  Transport Phenomena Fundamentals , 2020 .

[106]  Ole H. Jacobsen,et al.  RELATIONS BETWEEN SPECIFIC SURFACE AREA AND SOIL PHYSICAL AND CHEMICAL PROPERTIES , 1996 .

[107]  Aly A. Farag,et al.  MultiStencils Fast Marching Methods: A Highly Accurate Solution to the Eikonal Equation on Cartesian Domains , 2007, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[108]  C. Zou,et al.  A model for calculating the formation resistivity factor in low and middle porosity sandstone formations considering the effect of pore geometry , 2017 .

[109]  J. Paulsen,et al.  Numerical simulation of porous networks in relation to battery electrodes and separators , 2003 .

[110]  P. Adler,et al.  Lattice Spring Models , 2012, Transport in Porous Media.

[111]  Ricardo P. Dias,et al.  Tortuosity variation in a low density binary particulate bed , 2006 .

[112]  Bernhard Tjaden,et al.  The application of 3D imaging techniques, simulation and diffusion experiments to explore transport properties in porous oxygen transport membrane support materials , 2016 .

[113]  Surya R. Kalidindi,et al.  Morphological Analyses of Polymer Electrolyte Fuel Cell Electrodes with Nano‐Scale Computed Tomography Imaging , 2013 .

[114]  Pierre M. Adler,et al.  Fractal porous media IV: Three-dimensional stokes flow through random media and regular fractals , 1990 .

[115]  Suresh V. Garimella,et al.  Microtomography-Based Simulation of Transport through Open-Cell Metal Foams , 2010 .

[116]  Electrical and thermal tortuosity in powder compacts , 2007 .

[117]  J. Thovert,et al.  Electroosmotic Phenomena in Porous Media , 1996 .

[118]  A. Kovscek,et al.  Effects of Image Resolution on Sandstone Porosity and Permeability as Obtained from X-Ray Microscopy , 2018, Transport in Porous Media.

[119]  Bernard P. Boudreau,et al.  The diffusive tortuosity of fine-grained unlithified sediments , 1996 .

[120]  E. Garboczi,et al.  Interfacial transport in porous media: Application to dc electrical conductivity of mortars , 1995 .

[121]  Peter Grathwohl,et al.  Diffusion in Natural Porous Media: Contaminant Transport, Sorption/Desorption and Dissolution Kinetics , 1998 .

[122]  K. Sing,et al.  The Use of Molecular Probes for the Characterization of Nanoporous Adsorbents , 2004 .

[123]  Yoshito Nakashima,et al.  Mathematica Programs for the Analysis of Three-Dimensional Pore Connectivity and Anisotropic Tortuosity of Porous Rocks using X-ray Computed Tomography Image Data , 2007 .

[124]  Hubert A. Gasteiger,et al.  Tortuosity Determination of Battery Electrodes and Separators by Impedance Spectroscopy , 2016 .

[125]  A. Weerts,et al.  Simultaneous measurement of water retention and electrical conductivity in soils: Testing the Mualem‐Friedman Tortuosity Model , 1999 .

[126]  David F. Fouhey,et al.  Representative elementary volume estimation for porosity, moisture saturation, and air‐water interfacial areas in unsaturated porous media: Data quality implications , 2011 .

[127]  Yet-Ming Chiang,et al.  Design of Battery Electrodes with Dual‐Scale Porosity to Minimize Tortuosity and Maximize Performance , 2013, Advanced materials.

[128]  Salvatore Torquato,et al.  Morphology and physical properties of Fontainebleau sandstone via a tomographic analysis , 1996 .

[129]  I. Manke,et al.  Impact of sand content on solute diffusion in Opalinus Clay , 2015 .

[130]  Hiroshi Iwai,et al.  Quantification of SOFC anode microstructure based on dual beam FIB-SEM technique , 2010 .

[131]  Xinying Lu,et al.  Application of the Nernst-Einstein equation to concrete , 1997 .

[132]  Jon M. Hiller,et al.  Three-dimensional reconstruction of a solid-oxide fuel-cell anode , 2006, Nature materials.

[133]  Andrea F. Corral,et al.  Effects of membrane structure and operational variables on membrane distillation performance , 2017 .

[134]  B. Georgali,et al.  Microstructure of fire-damaged concrete. A case study , 2005 .

[135]  R. Zengerle,et al.  Morphological Evolution of Electrochemically Plated/Stripped Lithium Microstructures Investigated by Synchrotron X-ray Phase Contrast Tomography. , 2016, ACS nano.

[136]  Paul Munroe,et al.  The application of focused ion beam microscopy in the material sciences , 2009 .

[137]  P. S. Jørgensen,et al.  Triple phase boundary specific pathway analysis for quantitative characterization of solid oxide cell electrode microstructure , 2015 .

[138]  Orestis Malaspinas,et al.  Synchrotron X-ray microtomography and lattice Boltzmann simulations of gas flow through volcanic pumices , 2010 .

[139]  D. Wheeler,et al.  FIB/SEM-based calculation of tortuosity in a porous LiCoO2 cathode for a Li-ion battery , 2013 .

[140]  G. Mavko,et al.  What is the role of tortuosity in the Kozeny-Carman equation? , 2017 .

[141]  E. Weeks,et al.  A field technique to measure the tortuosity and sorption‐affected porosity for gaseous diffusion of materials in the unsaturated zone with experimental results from near Barnwell, South Carolina , 1988 .

[142]  Erlend Magnus Viggen,et al.  The Lattice Boltzmann Method , 2017 .

[143]  J A Sethian,et al.  A fast marching level set method for monotonically advancing fronts. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[144]  Pierre M. Adler,et al.  Flow in simulated porous media , 1990 .

[145]  Rudolf Hilfer,et al.  Continuum reconstruction of the pore scale microstructure for Fontainebleau sandstone , 2010 .

[146]  L. Pisani Simple Expression for the Tortuosity of Porous Media , 2011 .

[147]  Nigel P. Brandon,et al.  Multi Length Scale Microstructural Investigations of a Commercially Available Li-Ion Battery Electrode , 2012 .

[148]  M. Matyka,et al.  The Path Tracking Method as an alternative for tortuosity determination in granular beds , 2018, Granular Matter.

[149]  Salvatore Torquato,et al.  STATISTICAL DESCRIPTION OF MICROSTRUCTURES , 2002 .

[150]  Zhangxin Chen,et al.  Critical review of the impact of tortuosity on diffusion , 2007 .

[151]  Oluwadamilola O. Taiwo,et al.  Comparison of three‐dimensional analysis and stereological techniques for quantifying lithium‐ion battery electrode microstructures , 2016, Journal of microscopy.

[152]  Veerle Cnudde,et al.  Imaging and image-based fluid transport modeling at the pore scale in geological materials : a practical introduction to the current state-of-the-art , 2016 .

[153]  Tadeusz W Patzek,et al.  Direct prediction of the absolute permeability of unconsolidated and consolidated reservoir rock , 2004 .

[154]  Song Cen,et al.  Statistical characterization and reconstruction of heterogeneous microstructures using deep neural network , 2021, Computer Methods in Applied Mechanics and Engineering.

[155]  L. V. van Vliet,et al.  The determination of relative path length as a measure for tortuosity in compacts using image analysis. , 2006, European journal of pharmaceutical sciences : official journal of the European Federation for Pharmaceutical Sciences.

[156]  Boming Yu,et al.  NUMERICAL SIMULATION OF TORTUOSITY FOR FLUID FLOW IN TWO-DIMENSIONAL PORE FRACTAL MODELS OF POROUS MEDIA , 2014 .

[157]  M. Duduković,et al.  Tortuosity model for fixed beds randomly packed with identical particles , 2010 .

[158]  Bernhard Tjaden,et al.  Tortuosity in electrochemical devices: a review of calculation approaches , 2018 .

[159]  Jacques Comiti,et al.  A new model for determining mean structure parameters of fixed beds from pressure drop measurements: application to beds packed with parallelepipedal particles , 1989 .

[160]  Z. Koza,et al.  How to calculate tortuosity easily , 2012, 1203.5646.

[161]  J. Brenizer,et al.  Gas flow through aerogels , 1998 .

[162]  D. Rizzo,et al.  Commonly Used Porous Building Materials: Geomorphic Pore Structure and Fluid Transport , 2013 .

[163]  G. Qin,et al.  A Rigorous Upscaling Procedure to Predict Macro-scale Transport Properties of Natural Gas in Shales by Coupling Molecular Dynamics with Lattice Boltzmann Method , 2016 .

[164]  Titly Farhana Faisal,et al.  Micro-CT and FIB–SEM imaging and pore structure characterization of dolomite rock at multiple scales , 2017, Arabian Journal of Geosciences.

[165]  Jun Wang,et al.  Tortuosity characterization of 3D microstructure at nano-scale for energy storage and conversion materials , 2014 .

[166]  R. Bouchet,et al.  Tortuosity of porous particles. , 2007, Analytical chemistry.

[167]  H. Konietzky,et al.  Numerical Approach in Recognition of Selected Features of Rock Structure from Hybrid Hydrocarbon Reservoir Samples Based on Microtomography , 2017 .

[168]  E. Wachsman,et al.  Three-Dimensional Reconstruction of Porous LSCF Cathodes , 2007 .

[169]  Dorthe Wildenschild,et al.  Image processing of multiphase images obtained via X‐ray microtomography: A review , 2014 .

[170]  J. Thovert,et al.  Thermal conductivity of random media and regular fractals , 1990 .

[171]  P. Adler,et al.  Boundary flow condition analysis for the three-dimensional lattice Boltzmann model , 1994 .

[172]  M. Johns,et al.  Quantitative Tortuosity Measurements of Carbonate Rocks Using Pulsed Field Gradient NMR , 2019, Transport in Porous Media.

[173]  M. Darwish,et al.  The Finite Volume Method in Computational Fluid Dynamics: An Advanced Introduction with OpenFOAM® and Matlab , 2015 .

[174]  Pierre M. Adler,et al.  Deposition in porous media and clogging , 1993 .

[175]  Hans-Jörg Vogel,et al.  Quantification of soil structure based on Minkowski functions , 2010, Comput. Geosci..

[176]  Xiangyun Hu,et al.  Electrical conductivity models in saturated porous media: A review , 2017 .

[177]  David R. Cole,et al.  Characterization and Analysis of Porosity and Pore Structures , 2015 .

[178]  Mohammad Mehdi Ahmadi,et al.  Analytical derivation of tortuosity and permeability of monosized spheres: a volume averaging approach. , 2011, Physical review. E, Statistical, nonlinear, and soft matter physics.

[179]  M. Knackstedt,et al.  Direct simulation of electrical and hydraulic tortuosity in porous solids , 1995 .

[180]  Nigel P. Brandon,et al.  Local Tortuosity Inhomogeneities in a Lithium Battery Composite Electrode , 2011 .

[181]  R. Hilfer,et al.  High-precision synthetic computed tomography of reconstructed porous media. , 2011, Physical review. E, Statistical, nonlinear, and soft matter physics.

[182]  T. Zieliński Inverse identification and microscopic estimation of parameters for models of sound absorption in porous ceramics , 2015 .

[183]  Yoshito Nakashima,et al.  Estimate of transport properties of porous media by microfocus X‐ray computed tomography and random walk simulation , 2002 .

[184]  S. Stock,et al.  X-ray micro-computed tomography and tortuosity calculations of percolating pore networks , 2014 .