Steady flow in abdominal aortic aneurysm models.
暂无分享,去创建一个
Steady flow in abdominal aortic aneurysm models has been examined for four aneurysm sizes over Reynolds numbers from 500 to 2600. The Reynolds number is based on entrance tube diameter, and the inlet condition is fully developed flow. Experimental and numerical methods have been used to determine: (i) the overall features of the flow, (ii) the stresses on the aneurysm walls in laminar flow, and (iii) the onset and characteristics of turbulent flow. The laminar flow field is characterized by a jet of fluid (passing directly through the aneurysm) surrounded by a recirculating vortex. The wall shear stress magnitude in the recirculation zone is about ten times less than in the entrance tube. Both wall shear stress and wall normal stress profiles exhibit large magnitude peaks near the reattachment point at the distal end of the aneurysm. The onset of turbulence in the model is intermittent for 2000 < Re < 2500. The results demonstrate that a slug of turbulence in the entrance tube grows much more rapidly in the aneurysm than in a corresponding length of uniform cross section pipe. When turbulence is present in the aneurysm the recirculation zone breaks down and the wall shear stress returns to a magnitude comparable to that in the entrance tube.