Graph Embedding Discriminative Unsupervised Dimensionality Reduction

[1]  Jieping Ye,et al.  GPCA: an efficient dimension reduction scheme for image compression and retrieval , 2004, KDD.

[2]  A. Gámez,et al.  Nonlinear dimensionality reduction in climate data , 2004 .

[3]  Feiping Nie,et al.  Interactive Natural Image Segmentation via Spline Regression , 2009, IEEE Transactions on Image Processing.

[4]  Don X. Sun Feature dimension reduction using reduced-rank maximum likelihood estimation for hidden Markov models , 1996, Proceeding of Fourth International Conference on Spoken Language Processing. ICSLP '96.

[5]  Fan Chung,et al.  Spectral Graph Theory , 1996 .

[6]  K. Fan On a Theorem of Weyl Concerning Eigenvalues of Linear Transformations: II. , 1949, Proceedings of the National Academy of Sciences of the United States of America.

[7]  David A. Landgrebe,et al.  Supervised classification in high-dimensional space: geometrical, statistical, and asymptotical properties of multivariate data , 1998, IEEE Trans. Syst. Man Cybern. Part C.

[8]  Ron Kohavi,et al.  Irrelevant Features and the Subset Selection Problem , 1994, ICML.

[9]  S. Dudoit,et al.  Comparison of Discrimination Methods for the Classification of Tumors Using Gene Expression Data , 2002 .

[10]  G. McLachlan Discriminant Analysis and Statistical Pattern Recognition , 1992 .

[11]  K. K. Paliwal Dimensionality reduction of the enhanced feature set for the HMM-based speech recognizer , 1992, Digit. Signal Process..

[12]  G. Dunteman Principal Components Analysis , 1989 .

[13]  David J. Kriegman,et al.  Video-based face recognition using probabilistic appearance manifolds , 2003, 2003 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2003. Proceedings..

[14]  Jerome H. Friedman,et al.  On Bias, Variance, 0/1—Loss, and the Curse-of-Dimensionality , 2004, Data Mining and Knowledge Discovery.

[15]  S T Roweis,et al.  Nonlinear dimensionality reduction by locally linear embedding. , 2000, Science.

[16]  B. Mohar THE LAPLACIAN SPECTRUM OF GRAPHS y , 1991 .

[17]  Hiroshi Motoda,et al.  Feature Extraction, Construction and Selection: A Data Mining Perspective , 1998 .

[18]  Huan Liu,et al.  Efficient Feature Selection via Analysis of Relevance and Redundancy , 2004, J. Mach. Learn. Res..

[19]  Anil K. Jain,et al.  Algorithms for Clustering Data , 1988 .

[20]  J. H. Moore,et al.  Multifactor-dimensionality reduction reveals high-order interactions among estrogen-metabolism genes in sporadic breast cancer. , 2001, American journal of human genetics.

[21]  I. Jolliffe Principal Component Analysis , 2002 .

[22]  Feiping Nie,et al.  Optimal Dimensionality Discriminant Analysis and Its Application to Image Recognition , 2007, 2007 IEEE Conference on Computer Vision and Pattern Recognition.

[23]  Richard Bellman,et al.  Adaptive Control Processes - A Guided Tour (Reprint from 1961) , 2015, Princeton Legacy Library.

[24]  Christopher M. Bishop,et al.  Neural networks for pattern recognition , 1995 .

[25]  M. Turk,et al.  Eigenfaces for Recognition , 1991, Journal of Cognitive Neuroscience.

[26]  Edward Y. Chang,et al.  Parallel Spectral Clustering in Distributed Systems , 2011, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[27]  Huan Liu,et al.  Feature Selection for Classification , 1997, Intell. Data Anal..

[28]  David G. Stork,et al.  Pattern classification, 2nd Edition , 2000 .