TR-2012002: Randomized Matrix Methods for Real and Complex Polynomial Root-Finding

To advance the known approach to univariate polynomial root-finding via computations in Frobenius matrix algebra, we incorporate some effective methods for matrix eigen-solving, randomized matrix algorithms, and subdivision techniques. We also develop iterations directed to the approximation of only real roots. Our analysis and experiments show effectiveness of the resulting numerical real and complex root-finders. Our auxiliary results on randomized matrix computations can be of independent interest.

[1]  M. Mahoney,et al.  History of Mathematics , 1924, Nature.

[2]  J. Szarski Sur une méthode d'approximation des fonctions , 1948 .

[3]  B. Parlett Laguerre's Method Applied to the Matrix Eigenvalue Problem , 1964 .

[4]  On smallest isolated gerschgorin disks for eigenvalues , 1965 .

[5]  R. Varga,et al.  On smallest isolated gerschgorin disks for eigenvalues. III , 1968 .

[6]  G. Stewart On the Convergence of Sebastião E. Silva's Method for Finding a Zero of a Polynomial , 1970 .

[7]  R. Varga Minimal Gerschgorin Sets for Partitioned Matrices , 1970 .

[8]  A. Householder Generalizations of an algorithm of Sebastião e Silva , 1971 .

[9]  R. L. Johnston Gerschgorin theorems for partitioned matrices , 1971 .

[10]  E. Hansen,et al.  Some modifications of Laguerre's method , 1977 .

[11]  Arnold Schönhage,et al.  The fundamental theorem of algebra in terms of computational complexity - preliminary report , 1982 .

[12]  J. Dixon Estimating Extremal Eigenvalues and Condition Numbers of Matrices , 1983 .

[13]  Albrecht Böttcher,et al.  Spectral properties of banded Toeplitz matrices , 1987 .

[14]  A. Edelman Eigenvalues and condition numbers of random matrices , 1988 .

[15]  Michael Ben-Or,et al.  Simple algorithms for approximating all roots of a polynomial with real roots , 1990, J. Complex..

[16]  Victor Y. Pan,et al.  Parallel complexity of tridiagonal symmetric Eigenvalue problem , 1991, SODA '91.

[17]  David S. Watkins,et al.  Fundamentals of matrix computations , 1991 .

[18]  C. Pan,et al.  Rank-Revealing QR Factorizations and the Singular Value Decomposition , 1992 .

[19]  J. Pier Development of mathematics , 1994 .

[20]  Victor Y. Pan,et al.  Optimal (up to polylog factors) sequential and parallel algorithms for approximating complex polynomial zeros , 1995, STOC '95.

[21]  Ming Gu,et al.  Efficient Algorithms for Computing a Strong Rank-Revealing QR Factorization , 1996, SIAM J. Sci. Comput..

[22]  V. Pan Optimal and nearly optimal algorithms for approximating polynomial zeros , 1996 .

[23]  Victor Y. Pan,et al.  Graeffe's, Chebyshev-like, and Cardinal's Processes for Splitting a Polynomial into Factors , 1996, J. Complex..

[24]  Qiang Du,et al.  Quasi-Laguerre Iteration in Solving Symmetric Tridiagonal Eigenvalue Problems , 1996, SIAM J. Sci. Comput..

[25]  Victor Y. Pan,et al.  Solving a Polynomial Equation: Some History and Recent Progress , 1997, SIAM Rev..

[26]  Qiang Du,et al.  The quasi-Laguerre iteration , 1997, Math. Comput..

[27]  S. Goreinov,et al.  A Theory of Pseudoskeleton Approximations , 1997 .

[28]  G. W. Stewart,et al.  Matrix algorithms , 1998 .

[29]  Victor Y. Pan Solving Polynomials with Computers , 1998 .

[30]  Peter Kirrinnis,et al.  Partial Fraction Decomposition in (z) and Simultaneous Newton Iteration for Factorization in C[z] , 1998, J. Complex..

[31]  Victor Y. Pan,et al.  Computing Matrix Eigenvalues and Polynomial Zeros Where the Output is Real , 1998, SIAM J. Comput..

[32]  Xiulin Zou Analysis of the quasi-Laguerre method , 1999, Numerische Mathematik.

[33]  Victor Y. Pan,et al.  Approximating Complex Polynomial Zeros: Modified Weyl's Quadtree Construction and Improved Newton's Iteration , 2000, J. Complex..

[34]  C. Pan On the existence and computation of rank-revealing LU factorizations , 2000 .

[35]  J. Hubbard,et al.  How to find all roots of complex polynomials by Newton’s method , 2001 .

[36]  G. Stewart Matrix Algorithms, Volume II: Eigensystems , 2001 .

[37]  S. Goreinov,et al.  The maximum-volume concept in approximation by low-rank matrices , 2001 .

[38]  V. Pan Structured Matrices and Polynomials: Unified Superfast Algorithms , 2001 .

[39]  Gregorio Malajovich,et al.  On the Geometry of Graeffe Iteration , 2001, J. Complex..

[40]  Victor Y. Pan,et al.  Univariate polynomials: nearly optimal algorithms for factorization and rootfinding , 2001, ISSAC '01.

[41]  S. Szarek,et al.  Chapter 8 - Local Operator Theory, Random Matrices and Banach Spaces , 2001 .

[42]  V. Pan,et al.  Inverse power and Durand-Kerner iterations for univariate polynomial root-finding , 2002 .

[43]  J. McNamee A 2002 update of the supplementary bibliography on roots of polynomials , 2002 .

[44]  V. Pan,et al.  Improved initialization of the accelerated and robust QR-like polynomial root-finding. , 2004 .

[45]  Dario Bini,et al.  ON THE SHIFTED QR ITERATION APPLIED TO COMPANION MATRICES , 2004 .

[46]  A. U.S.,et al.  The Amended DSeSC Power Method for Polynomial Root-Finding , 2004 .

[47]  Giuseppe Fiorentino,et al.  Design, analysis, and implementation of a multiprecision polynomial rootfinder , 2000, Numerical Algorithms.

[48]  V. Pan The amended DSeSC power method for polynomial root-finding , 2005 .

[49]  Alan Edelman,et al.  Tails of Condition Number Distributions , 2005, SIAM J. Matrix Anal. Appl..

[50]  Zizhong Chen,et al.  Condition Numbers of Gaussian Random Matrices , 2005, SIAM J. Matrix Anal. Appl..

[51]  Dario Bini,et al.  Numerical computation of polynomial zeros by means of Aberth's method , 1996, Numerical Algorithms.

[52]  Victor Y. Pan,et al.  Fast and stable QR eigenvalue algorithms for generalized companion matrices and secular equations , 2005, Numerische Mathematik.

[53]  Victor Y. Pan,et al.  Practical improvement of the divide-and-conquer eigenvalue algorithms , 2005, Computing.

[54]  D. Spielman,et al.  Smoothed Analysis of the Condition Numbers and Growth Factors of Matrices , 2003, SIAM Journal on Matrix Analysis and Applications.

[55]  Ioannis Z. Emiris,et al.  Univariate Polynomial Real Root Isolation: Continued Fractions Revisited , 2006, ESA.

[56]  Chee-Keng Yap,et al.  Almost tight recursion tree bounds for the Descartes method , 2006, ISSAC '06.

[57]  Victor Y. Pan,et al.  Numerical methods for roots of polynomials , 2007 .

[58]  I. Emiris,et al.  Real Algebraic Numbers: Complexity Analysis and Experimentations , 2008 .

[59]  Bernard Mourrain,et al.  Real Algebraic Numbers: Complexity Analysis and Experimentation , 2008, Reliable Implementation of Real Number Algorithms.

[60]  Nicholas J. Higham,et al.  Functions of matrices - theory and computation , 2008 .

[61]  Daniel B. Szyld,et al.  The matrix eigenvalue problem: GR and Krylov subspace methods , 2009, Math. Comput..

[62]  Bernard Mourrain,et al.  Experimental evaluation and cross-benchmarking of univariate real solvers , 2009, SNC '09.

[63]  S. Goreinov,et al.  How to find a good submatrix , 2010 .

[64]  Daniel J. Velleman American Mathematical Monthly , 2010 .

[65]  Victor Y. Pan,et al.  Real and complex polynomial root-finding with eigen-solving and preprocessing , 2010, ISSAC.

[66]  Dario Bini,et al.  A Fast Implicit QR Eigenvalue Algorithm for Companion Matrices , 2010 .

[67]  Paul Van Dooren,et al.  Implicit double shift QR-algorithm for companion matrices , 2010, Numerische Mathematik.

[68]  V. Pan,et al.  Matrix computations and polynomial root-finding with preprocessing☆ , 2011 .

[69]  Victor Y. Pan,et al.  New progress in real and complex polynomial root-finding , 2011, Comput. Math. Appl..

[70]  C. Beltrán Estimates on the condition number of random rank-deficient matrices , 2011 .

[71]  Enrico Bozzo,et al.  qd-Type Methods for Quasiseparable Matrices , 2011, SIAM J. Matrix Anal. Appl..

[72]  Kurt Mehlhorn,et al.  A deterministic algorithm for isolating real roots of a real polynomial , 2011, J. Symb. Comput..

[73]  Victor Y. Pan,et al.  Root-finding by expansion with independent constraints , 2011, Comput. Math. Appl..

[74]  Robert H. Halstead,et al.  Matrix Computations , 2011, Encyclopedia of Parallel Computing.

[75]  Victor Y. Pan,et al.  Randomized preconditioning of the MBA algorithm , 2011, ISSAC '11.

[76]  V. Pan,et al.  Randomized and Derandomized Matrix Computations ∗ , 2011 .

[77]  Chee-Keng Yap,et al.  A simple but exact and efficient algorithm for complex root isolation , 2011, ISSAC '11.

[78]  Nathan Halko,et al.  Finding Structure with Randomness: Probabilistic Algorithms for Constructing Approximate Matrix Decompositions , 2009, SIAM Rev..

[79]  Michael Sagraloff,et al.  When Newton meets Descartes: a simple and fast algorithm to isolate the real roots of a polynomial , 2011, ISSAC.

[80]  Victor Y. Pan,et al.  Efficient polynomial root-refiners: A survey and new record efficiency estimates , 2012, Comput. Math. Appl..

[81]  Chee-Keng Yap,et al.  Near optimal tree size bounds on a simple real root isolation algorithm , 2012, ISSAC.

[82]  Victor Y. Pan,et al.  Univariate polynomial root-finding by arming with constraints , 2012, SNC '11.

[83]  André Galligo,et al.  A root isolation algorithm for sparse univariate polynomials , 2012, ISSAC.

[84]  Elias P. Tsigaridas,et al.  Univariate real root isolation in multiple extension fields , 2012, ISSAC.

[85]  V. Pan,et al.  TR-2012013: Condition Numbers of Random Toeplitz and Circulant Matrices , 2012, 1212.4551.

[86]  V. Pan,et al.  N A ] 2 4 D ec 2 01 2 More on the Power of Randomized Matrix Multiplication ∗ , 2012 .

[87]  J. Demmel The Probability That a Numerical, Analysis Problem Is Difficult , 2013 .

[88]  Jim Euchner Design , 2014, Catalysis from A to Z.