Identifying critical kinematic features of animate motion and contribution to animacy perception

[1]  Yukiko Ogura,et al.  Fetal blockade of nicotinic acetylcholine transmission causes autism-like impairment of biological motion preference in the neonatal chick , 2022, Cerebral cortex communications.

[2]  Bastien S. Lemaire,et al.  Spontaneous preference for unpredictability in the temporal contingencies between agents' motion in naive domestic chicks , 2022, Proceedings of the Royal Society B.

[3]  Bastien S. Lemaire,et al.  Life is in motion (through a chick’s eye) , 2022, Animal Cognition.

[4]  Á. Miklósi,et al.  Exploring the advantages of using artificial agents to investigate animacy perception in cats and dogs , 2022, Bioinspiration & biomimetics.

[5]  Zuxiang Liu,et al.  Gravity-Dependent Animacy Perception in Zebrafish , 2022, Research.

[6]  Vera Vasas,et al.  Newborn chicks prefer stimuli that move against gravity , 2022, bioRxiv.

[7]  Á. Miklósi,et al.  Chasing perception in domestic cats and dogs , 2022, Animal Cognition.

[8]  G. Vallortigara Born Knowing: Imprinting and the Origins of Knowledge , 2021 .

[9]  F. Simion,et al.  Abnormal visual attention to simple social stimuli in 4-month-old infants at high risk for Autism , 2021, Scientific Reports.

[10]  G. Vallortigara,et al.  Evolutionary and Neural Bases of the Sense of Animacy , 2021, The Cambridge Handbook of Animal Cognition.

[11]  P. Shamble,et al.  Perception of biological motion by jumping spiders , 2021, PLoS biology.

[12]  Xinqiang Chen,et al.  High-Resolution Vehicle Trajectory Extraction and Denoising From Aerial Videos , 2021, IEEE Transactions on Intelligent Transportation Systems.

[13]  Bastien S. Lemaire,et al.  Resurgence of an Inborn Attraction for Animate Objects via Thyroid Hormone T3 , 2021, Frontiers in Behavioral Neuroscience.

[14]  Bastien S. Lemaire,et al.  Sensitive periods for social development: Interactions between predisposed and learned mechanisms , 2021, Cognition.

[15]  Giorgio Vallortigara,et al.  Newborns’ sensitivity to speed changes as a building block for animacy perception , 2020, bioRxiv.

[16]  P. White Visual impressions of active and inanimate resistance to impact from a moving object , 2020, Visual Cognition.

[17]  Diana D Chin,et al.  Birds repurpose the role of drag and lift to take off and land , 2019, Nature Communications.

[18]  G. Vallortigara,et al.  Inexperienced preys know when to flee or to freeze in front of a threat , 2019, Proceedings of the National Academy of Sciences.

[19]  Heinrich H. Bülthoff,et al.  Perceiving animacy purely from visual motion cues involves intraparietal sulcus , 2019, NeuroImage.

[20]  G. Vallortigara,et al.  Selective response of the nucleus taeniae of the amygdala to a naturalistic social stimulus in visually naive domestic chicks , 2019, Scientific Reports.

[21]  Andrew R. Mitz,et al.  NIMH MonkeyLogic: Behavioral control and data acquisition in MATLAB , 2019, Journal of Neuroscience Methods.

[22]  D. Biro,et al.  Birds invest wingbeats to keep a steady head and reap the ultimate benefits of flying together , 2019, PLoS biology.

[23]  G. Vallortigara,et al.  A transient time window for early predispositions in newborn chicks , 2019, Scientific Reports.

[24]  G. Vallortigara,et al.  Embryonic Exposure to Valproic Acid Affects Social Predispositions for Dynamic Cues of Animate Motion in Newly-Hatched Chicks , 2019, Front. Physiol..

[25]  L. Gool,et al.  Learning Discriminative Model Prediction for Tracking , 2019, 2019 IEEE/CVF International Conference on Computer Vision (ICCV).

[26]  A. Kacelnik,et al.  Priors in Animal and Artificial Intelligence: Where Does Learning Begin? , 2018, Trends in Cognitive Sciences.

[27]  Herwig Baier,et al.  Biological Motion as an Innate Perceptual Mechanism Driving Social Affiliation , 2018, Current Biology.

[28]  G. Vallortigara,et al.  Embryonic Exposure to Valproic Acid Impairs Social Predispositions of Newly-Hatched Chicks , 2018, Scientific Reports.

[29]  G. Vallortigara,et al.  Visually-naïve chicks prefer agents that move as if constrained by a bilateral body-plan , 2018, Cognition.

[30]  F. Simion,et al.  Visual cues of motion that trigger animacy perception at birth: the case of self-propulsion. , 2017, Developmental science.

[31]  G. Vallortigara,et al.  Dynamic features of animate motion activate septal and preoptic areas in visually naïve chicks (Gallus gallus) , 2017, Neuroscience.

[32]  G. Vallortigara,et al.  Filial responses as predisposed and learned preferences: Early attachment in chicks and babies , 2017, Behavioural Brain Research.

[33]  Á. Miklósi,et al.  Novel approach to study the perception of animacy in dogs , 2017, PloS one.

[34]  Giorgio Vallortigara,et al.  The motion of a living conspecific activates septal and preoptic areas in naive domestic chicks (Gallus gallus) , 2017, The European journal of neuroscience.

[35]  G. Vallortigara,et al.  First exposure to an alive conspecific activates septal and amygdaloid nuclei in visually-naïve domestic chicks (Gallus gallus) , 2017, Behavioural Brain Research.

[36]  L. Regolin,et al.  Spontaneous preference for visual cues of animacy in naïve domestic chicks: The case of speed changes , 2016, Cognition.

[37]  Michael Felsberg,et al.  ECO: Efficient Convolution Operators for Tracking , 2016, 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[38]  Giorgio Vallortigara,et al.  Difference in Visual Social Predispositions Between Newborns at Low- and High-risk for Autism , 2016, Scientific Reports.

[39]  Ryan M. Shelton,et al.  Field Flight Dynamics of Hummingbirds during Territory Encroachment and Defense , 2015, PloS one.

[40]  Carolyn Jeane Perry,et al.  Feature integration and object representations along the dorsal stream visual hierarchy , 2014, Front. Comput. Neurosci..

[41]  G. Csibra,et al.  Action anticipation in human infants reveals assumptions about anteroposterior body-structure and action , 2014, Proceedings of the Royal Society B: Biological Sciences.

[42]  M. D. Rutherford,et al.  Social perception : detection and interpretation of animacy, agency, and intention , 2013 .

[43]  Scott P. Johnson,et al.  Infants’ perception of chasing , 2013, Cognition.

[44]  Guillaume A. Rousselet,et al.  Robust Correlation Analyses: False Positive and Power Validation Using a New Open Source Matlab Toolbox , 2012, Front. Psychology.

[45]  M. Pavlova Biological motion processing as a hallmark of social cognition. , 2012, Cerebral cortex.

[46]  Bruno Bruderer,et al.  Wing‐beat characteristics of birds recorded with tracking radar and cine camera , 2010 .

[47]  Giorgio Vallortigara,et al.  Innate sensitivity for self-propelled causal agency in newly hatched chicks , 2010, Proceedings of the National Academy of Sciences.

[48]  K. C. Divya,et al.  Battery Energy Storage Technology for power systems-An overview , 2009 .

[49]  M. D. Rutherford,et al.  Dissociating the perception of speed and the perception of animacy: a functional approach ☆ , 2008 .

[50]  F. Simion,et al.  A predisposition for biological motion in the newborn baby , 2008, Proceedings of the National Academy of Sciences.

[51]  M. Rutherford,et al.  Actual and illusory differences in constant speed influence the perception of animacy similarly. , 2007, Journal of vision.

[52]  Nikolaus F. Troje,et al.  Animacy and direction from point-light displays: Is there a life detector? , 2007 .

[53]  David J. Freedman,et al.  Experience-dependent representation of visual categories in parietal cortex , 2006, Nature.

[54]  Mark H Johnson,et al.  Biological Motion: A Perceptual Life Detector? , 2006, Current Biology.

[55]  N. Troje,et al.  The Inversion Effect in Biological Motion Perception: Evidence for a “Life Detector”? , 2006, Current Biology.

[56]  Julia Kastner,et al.  Introduction to Robust Estimation and Hypothesis Testing , 2005 .

[57]  P. Todd,et al.  Accurate judgments of intention from motion cues alone: A cross-cultural study , 2005 .

[58]  Giorgio Vallortigara,et al.  Visually Inexperienced Chicks Exhibit Spontaneous Preference for Biological Motion Patterns , 2005, PLoS biology.

[59]  E. Gyulai,et al.  Considerations on Perception of “Animacy” in the Motion of a Single Object , 2004, Perceptual and motor skills.

[60]  Dimitrios Gunopulos,et al.  Rotation invariant distance measures for trajectories , 2004, KDD.

[61]  K. Wynn,et al.  Attribution of Dispositional States by 12-Month-Olds , 2003, Psychological science.

[62]  R. McNeill Alexander,et al.  Principles of Animal Locomotion , 2002 .

[63]  Patrice D. Tremoulet,et al.  Perceptual causality and animacy , 2000, Trends in Cognitive Sciences.

[64]  Patrice D. Tremoulet,et al.  Perception of Animacy from the Motion of a Single Object , 2000, Perception.

[65]  Tobalske,et al.  Kinematics of flap-bounding flight in the zebra finch over a wide range of speeds , 1999, The Journal of experimental biology.

[66]  Maninder K. Kahlon,et al.  Visual Motion Analysis for Pursuit Eye Movements in Area MT of Macaque Monkeys , 1999, The Journal of Neuroscience.

[67]  Marc D. Hauser,et al.  A nonhuman primate's expectations about object motion and destination: The importance of self-propelled movement and animacy , 1998 .

[68]  P. Rochat,et al.  Young infants' sensitivity to movement information specifying social causality , 1997 .

[69]  Tobalske,et al.  Flight kinematics of black-billed magpies and pigeons over a wide range of speeds , 1996, The Journal of experimental biology.

[70]  R. Wurtz,et al.  Sensitivity of MST neurons to optic flow stimuli. II. Mechanisms of response selectivity revealed by small-field stimuli. , 1991, Journal of neurophysiology.

[71]  C. S. Holling,et al.  Prey capture by the African lion , 1977 .

[72]  H. Howland Optimal strategies for predator avoidance: the relative importance of speed and manoeuvrability. , 1974, Journal of theoretical biology.

[73]  G. Johansson Visual perception of biological motion and a model for its analysis , 1973 .

[74]  F. Heider,et al.  An experimental study of apparent behavior , 1944 .

[75]  Damaris Zurell,et al.  Collinearity: a review of methods to deal with it and a simulation study evaluating their performance , 2013 .

[76]  Nikolaus F. Troje,et al.  What is biological motion?: Definition, stimuli and paradigms , 2012 .

[77]  Dorita H. F. Chang,et al.  Acceleration carries the local inversion effect in biological motion perception. , 2009, Journal of vision.

[78]  L. Kaufman,et al.  Distinguishing Between Animates And Inanimates: Not By Motion Alone , 1995 .

[79]  J. Stewart PERCEPTION OF ANIMACY , 1982 .

[80]  M. Giese,et al.  Nonvisual Motor Training Influences Biological Motion Perception , 2022 .