AKAP Signaling Islands: Venues for Precision Pharmacology.

[1]  Sung In Lim Fine-tuning bispecific therapeutics. , 2020, Pharmacology & therapeutics.

[2]  Vittorio Limongelli,et al.  Bioinformatics and Biosimulations as Toolbox for Peptides and Peptidomimetics Design: Where Are We? , 2020, Frontiers in Molecular Biosciences.

[3]  Delong Meng,et al.  A-kinase anchoring protein 8L interacts with mTORC1 and promotes cell growth , 2020, The Journal of Biological Chemistry.

[4]  S. Mitragotri,et al.  Targeting Strategies for Tissue-Specific Drug Delivery , 2020, Cell.

[5]  G. Dittmar,et al.  Cyclin-Dependent Kinase 18 Controls Trafficking of Aquaporin-2 and Its Abundance through Ubiquitin Ligase STUB1, Which Functions as an AKAP , 2020, Cells.

[6]  S. Strack,et al.  A-Kinase Anchoring Protein 1: Emerging Roles in Regulating Mitochondrial Form and Function in Health and Disease , 2020, Cells.

[7]  Q. Wei,et al.  A novel peptide exerts potent immunosuppression by blocking the two-site interaction of NFAT with calcineurin , 2020, The Journal of Biological Chemistry.

[8]  S. Farouk,et al.  The Many Faces of Calcineurin Inhibitor Toxicity-What the FK? , 2020, Advances in chronic kidney disease.

[9]  M. McNiven,et al.  The small GTPase Rab32 resides on lysosomes to regulate mTORC1 signaling , 2020, Journal of Cell Science.

[10]  Dustin J Maly,et al.  Subcellular drug targeting illuminates local kinase action , 2019, eLife.

[11]  A. Bonni,et al.  Regulation of neuronal connectivity in the mammalian brain by chromatin remodeling , 2019, Current Opinion in Neurobiology.

[12]  John D. Scott,et al.  CG-NAP/Kinase Interactions Fine-Tune T Cell Functions , 2019, Front. Immunol..

[13]  A. Ciulli,et al.  Bifunctional chemical probes inducing protein-protein interactions. , 2019, Current opinion in chemical biology.

[14]  C. Dessauer,et al.  Regulation of IKs Potassium Current by Isoproterenol in Adult Cardiomyocytes Requires Type 9 Adenylyl Cyclase , 2019, Cells.

[15]  W. Sather,et al.  AKAP79/150 recruits the transcription factor NFAT to regulate signaling to the nucleus by neuronal L-type Ca2+ channels , 2019, Molecular biology of the cell.

[16]  Eric C Greenwald,et al.  AKAP95 Organizes a Nuclear Microdomain to Control Local cAMP for Regulating Nuclear PKA. , 2019, Cell chemical biology.

[17]  L. Langeberg,et al.  An acquired scaffolding function of the DNAJ-PKAc fusion contributes to oncogenic signaling in fibrolamellar carcinoma , 2019, eLife.

[18]  P. Curmi,et al.  Two Sides of the Coin: Ezrin/Radixin/Moesin and Merlin Control Membrane Structure and Contact Inhibition , 2019, International journal of molecular sciences.

[19]  E. Soderblom,et al.  In vivo proximity proteomics of nascent synapses reveals a novel regulator of cytoskeleton-mediated synaptic maturation , 2019, Nature Communications.

[20]  Manuel F. Navedo,et al.  Single nucleotide polymorphisms alter kinase anchoring and the subcellular targeting of A-kinase anchoring proteins , 2018, Proceedings of the National Academy of Sciences.

[21]  S. Simon,et al.  Fibrolamellar carcinoma in the Carney complex: PRKAR1A loss instead of the classic DNAJB1‐PRKACA fusion , 2018, Hepatology.

[22]  P. Collas,et al.  OPA1-anchored PKA phosphorylates perilipin 1 on S522 and S497 in adipocytes differentiated from human adipose stem cells , 2018, Molecular biology of the cell.

[23]  Jan Hasenauer,et al.  PKA-RII subunit phosphorylation precedes activation by cAMP and regulates activity termination , 2018, The Journal of cell biology.

[24]  Nicolas L. Fawzi,et al.  Protein Phase Separation: A New Phase in Cell Biology. , 2018, Trends in cell biology.

[25]  M. Zaccolo,et al.  cAMP: From Long-Range Second Messenger to Nanodomain Signalling. , 2017, Trends in pharmacological sciences.

[26]  Chun Guo,et al.  Emerging Roles of MTG16 in Cell-Fate Control of Hematopoietic Stem Cells and Cancer , 2017, Stem cells international.

[27]  S. Cianférani,et al.  EB1-binding–myomegalin protein complex promotes centrosomal microtubules functions , 2017, Proceedings of the National Academy of Sciences.

[28]  Florian Stengel,et al.  Mechanisms for restraining cAMP-dependent protein kinase revealed by subunit quantitation and cross-linking approaches , 2017, Proceedings of the National Academy of Sciences.

[29]  Kristofer C. Berrett,et al.  CRISPR Epigenome Editing of AKAP150 in DRG Neurons Abolishes Degenerative IVD-Induced Neuronal Activation. , 2017, Molecular therapy : the journal of the American Society of Gene Therapy.

[30]  D. Veesler,et al.  Local protein kinase A action proceeds through intact holoenzymes , 2017, Science.

[31]  C. Procaccini,et al.  Mitochondrial AKAP1 supports mTOR pathway and tumor growth , 2017, Cell Death & Disease.

[32]  S. Tillo,et al.  Liberated PKA Catalytic Subunits Associate with the Membrane via Myristoylation to Preferentially Phosphorylate Membrane Substrates. , 2017, Cell reports.

[33]  Brenda C. Shields,et al.  Deconstructing behavioral neuropharmacology with cellular specificity , 2017, Science.

[34]  K. Taskén,et al.  A protein kinase A-ezrin complex regulates connexin 43 gap junction communication in liver epithelial cells. , 2017, Cellular signalling.

[35]  W. Birchmeier,et al.  The A-Kinase Anchoring Protein (AKAP) Glycogen Synthase Kinase 3β Interaction Protein (GSKIP) Regulates β-Catenin through Its Interactions with Both Protein Kinase A (PKA) and GSK3β * , 2016, The Journal of Biological Chemistry.

[36]  E. Klussmann,et al.  Pharmacological Interference With Protein-protein Interactions of Akinase Anchoring Proteins as a Strategy for the Treatment of Disease. , 2016, Current drug targets.

[37]  V. Papadopoulos,et al.  Adrenal Mitochondria and Steroidogenesis: From Individual Proteins to Functional Protein Assemblies , 2016, Front. Endocrinol..

[38]  L. Langeberg,et al.  AKAP220 manages apical actin networks that coordinate aquaporin-2 location and renal water reabsorption , 2016, Proceedings of the National Academy of Sciences.

[39]  U. Heinemann,et al.  AKAP18:PKA-RIIα structure reveals crucial anchor points for recognition of regulatory subunits of PKA. , 2016, The Biochemical journal.

[40]  J. Moss,et al.  Enhancement of β-catenin activity by BIG1 plus BIG2 via Arf activation and cAMP signals , 2016, Proceedings of the National Academy of Sciences.

[41]  John D. Scott,et al.  Enhanced cAMP-stimulated protein kinase A activity in human fibrolamellar hepatocellular carcinoma , 2016, Pediatric Research.

[42]  E. Walters,et al.  Persistent Electrical Activity in Primary Nociceptors after Spinal Cord Injury Is Maintained by Scaffolded Adenylyl Cyclase and Protein Kinase A and Is Associated with Altered Adenylyl Cyclase Regulation , 2016, The Journal of Neuroscience.

[43]  L. Langeberg,et al.  A mitotic kinase scaffold depleted in testicular seminomas impacts spindle orientation in germ line stem cells , 2015, eLife.

[44]  Susan S. Taylor,et al.  An Isoform-Specific Myristylation Switch Targets Type II PKA Holoenzymes to Membranes. , 2015, Structure.

[45]  L. Nieman,et al.  Cushing's syndrome , 2015, The Lancet.

[46]  G. Taglialatela,et al.  Reduced Incidence of Dementia in Solid Organ Transplant Patients Treated with Calcineurin Inhibitors , 2015, Journal of Alzheimer's disease : JAD.

[47]  B. Snel,et al.  Spatial Organization in Protein Kinase A Signaling Emerged at the Base of Animal Evolution. , 2015, Journal of proteome research.

[48]  B. Tunquist,et al.  Protein Kinase A Opposes the Phosphorylation-dependent Recruitment of Glycogen Synthase Kinase 3β to A-kinase Anchoring Protein 220* , 2015, The Journal of Biological Chemistry.

[49]  J. Bertherat,et al.  The genetics of adrenocortical tumors. , 2015, Endocrinology and metabolism clinics of North America.

[50]  L. Langeberg,et al.  Signalling scaffolds and local organization of cellular behaviour , 2015, Nature Reviews Molecular Cell Biology.

[51]  A. Scholten,et al.  A systematic evaluation of protein kinase A-A-kinase anchoring protein interaction motifs. , 2015, Biochemistry.

[52]  F. Beuschlein,et al.  PKA catalytic subunit mutations in adrenocortical Cushing’s adenoma impair association with the regulatory subunit , 2014, Nature Communications.

[53]  M. Zaccolo,et al.  cAMP signaling in subcellular compartments. , 2014, Pharmacology & therapeutics.

[54]  V. Doye,et al.  Probing nuclear pore complex architecture with proximity-dependent biotinylation , 2014, Proceedings of the National Academy of Sciences.

[55]  T. Gonen,et al.  Intrinsic disorder within an AKAP-protein kinase A complex guides local substrate phosphorylation , 2013, eLife.

[56]  Stephan Lange,et al.  Cypher/ZASP Is a Novel A-kinase Anchoring Protein* , 2013, The Journal of Biological Chemistry.

[57]  A. Kawabata,et al.  AKAP‐dependent sensitization of Cav3.2 channels via the EP4 receptor/cAMP pathway mediates PGE2‐induced mechanical hyperalgesia , 2013, British journal of pharmacology.

[58]  E. Fischer Cellular regulation by protein phosphorylation. , 2013, Biochemical and biophysical research communications.

[59]  John D. Scott,et al.  Creating order from chaos: cellular regulation by kinase anchoring. , 2013, Annual review of pharmacology and toxicology.

[60]  C. Dessauer,et al.  Scaffolding by A-Kinase Anchoring Protein Enhances Functional Coupling between Adenylyl Cyclase and TRPV1 Channel* , 2012, The Journal of Biological Chemistry.

[61]  Mason R. Mackey,et al.  A Small Novel A-Kinase Anchoring Protein (AKAP) That Localizes Specifically Protein Kinase A-Regulatory Subunit I (PKA-RI) to the Plasma Membrane* , 2012, The Journal of Biological Chemistry.

[62]  J. Gorski,et al.  AKAP150-Anchored Calcineurin Regulates Synaptic Plasticity by Limiting Synaptic Incorporation of Ca2+-Permeable AMPA Receptors , 2012, The Journal of Neuroscience.

[63]  Ping Zhang,et al.  Assembly of allosteric macromolecular switches: lessons from PKA , 2012, Nature Reviews Molecular Cell Biology.

[64]  A. El-Husseini,et al.  Palmitoylation of A-Kinase Anchoring Protein 79/150 Regulates Dendritic Endosomal Targeting and Synaptic Plasticity Mechanisms , 2012, The Journal of Neuroscience.

[65]  Susan S. Taylor,et al.  Structure and Allostery of the PKA RIIβ Tetrameric Holoenzyme , 2012, Science.

[66]  Susan S. Taylor,et al.  An entirely specific type I A-kinase anchoring protein that can sequester two molecules of protein kinase A at mitochondria , 2011, Proceedings of the National Academy of Sciences.

[67]  B. Tunquist,et al.  AKAP220 Protein Organizes Signaling Elements That Impact Cell Migration* , 2011, The Journal of Biological Chemistry.

[68]  S. Heymans,et al.  Integrating cardiac PIP3 and cAMP signaling through a PKA anchoring function of p110γ. , 2011, Molecular cell.

[69]  C. Balke,et al.  Cardiac Troponin T, a Sarcomeric AKAP, Tethers Protein Kinase A at the Myofilaments* , 2010, The Journal of Biological Chemistry.

[70]  T. V. van Veen,et al.  Sphingosine Kinase Interacting Protein is an A‐Kinase Anchoring Protein Specific for Type I cAMP‐Dependent Protein Kinase , 2010, Chembiochem : a European journal of chemical biology.

[71]  K. Taskén,et al.  Specificity and spatial dynamics of protein kinase A signaling organized by A-kinase-anchoring proteins. , 2010, Journal of molecular endocrinology.

[72]  M. Bal,et al.  Ca2+/Calmodulin Disrupts AKAP79/150 Interactions with KCNQ (M-Type) K+ Channels , 2010, The Journal of Neuroscience.

[73]  T. Pawson,et al.  Cell Signaling in Space and Time: Where Proteins Come Together and When They’re Apart , 2009, Science.

[74]  C. Dessauer,et al.  An Adenylyl Cyclase-mAKAPβ Signaling Complex Regulates cAMP Levels in Cardiac Myocytes* , 2009, The Journal of Biological Chemistry.

[75]  Fang Zhang,et al.  Loss of AKAP150 perturbs distinct neuronal processes in mice , 2008, Proceedings of the National Academy of Sciences.

[76]  Marta Fernandez-Suarez,et al.  Protein-protein interaction detection in vitro and in cells by proximity biotinylation. , 2008, Journal of the American Chemical Society.

[77]  L. Langeberg,et al.  MyRIP Anchors Protein Kinase A to the Exocyst Complex* , 2007, Journal of Biological Chemistry.

[78]  M. Zaccolo,et al.  AKAP complex regulates Ca2+ re‐uptake into heart sarcoplasmic reticulum , 2007, EMBO reports.

[79]  W. Sather,et al.  AKAP79/150 Anchoring of Calcineurin Controls Neuronal L-Type Ca2+ Channel Activity and Nuclear Signaling , 2007, Neuron.

[80]  M. Lazdunski,et al.  AKAP150, a switch to convert mechano‐, pH‐ and arachidonic acid‐sensitive TREK K+ channels into open leak channels , 2006, The EMBO journal.

[81]  C. Carlson,et al.  Molecular basis of AKAP specificity for PKA regulatory subunits. , 2006, Molecular cell.

[82]  Naoto Hoshi,et al.  Dynamic regulation of cAMP synthesis through anchored PKA-adenylyl cyclase V/VI complexes. , 2006, Molecular cell.

[83]  C. Carlson,et al.  Delineation of Type I Protein Kinase A-selective Signaling Events Using an RI Anchoring Disruptor* , 2006, Journal of Biological Chemistry.

[84]  Kimberly C. Smith,et al.  Dynamic Anchoring of PKA Is Essential during Oocyte Maturation , 2006, Current Biology.

[85]  L. Langeberg,et al.  Distinct enzyme combinations in AKAP signalling complexes permit functional diversity , 2005, Nature Cell Biology.

[86]  L. Langeberg,et al.  The protein kinase A anchoring protein mAKAP coordinates two integrated cAMP effector pathways , 2005, Nature.

[87]  Andreas Gocht,et al.  The casein kinase 1 family: participation in multiple cellular processes in eukaryotes. , 2005, Cellular signalling.

[88]  T. Pawson,et al.  Protein phosphorylation in signaling--50 years and counting. , 2005, Trends in biochemical sciences.

[89]  John D. Scott,et al.  AKAP signalling complexes: focal points in space and time , 2004, Nature Reviews Molecular Cell Biology.

[90]  L. Langeberg,et al.  AKAP150 signaling complex promotes suppression of the M-current by muscarinic agonists , 2003, Nature Neuroscience.

[91]  Naoto Hoshi,et al.  Bioinformatic design of A-kinase anchoring protein-in silico: A potent and selective peptide antagonist of type II protein kinase A anchoring , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[92]  J. Raber,et al.  Loss of WAVE-1 causes sensorimotor retardation and reduced learning and memory in mice , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[93]  S. J. Tavalin,et al.  Mapping the Protein Phosphatase-2B Anchoring Site on AKAP79 , 2002, The Journal of Biological Chemistry.

[94]  T. Hunter,et al.  The Protein Kinase Complement of the Human Genome , 2002, Science.

[95]  P. Cohen,et al.  The origins of protein phosphorylation , 2002, Nature Cell Biology.

[96]  S. Døskeland,et al.  Formation of Inactive cAMP-saturated Holoenzyme of cAMP-dependent Protein Kinase under Physiological Conditions* , 2002, The Journal of Biological Chemistry.

[97]  L. Langeberg,et al.  mAKAP assembles a protein kinase A/PDE4 phosphodiesterase cAMP signaling module , 2001, The EMBO journal.

[98]  K. Taskén,et al.  Specificity in the cAMP/PKA signaling pathway. differential expression, regulation, and subcellular localization of subunits of PKA. , 2000, Frontiers in bioscience : a journal and virtual library.

[99]  R. Huganir,et al.  Targeting of PKA to Glutamate Receptors through a MAGUK-AKAP Complex , 2000, Neuron.

[100]  I. Fraser,et al.  Modulation of Ion Channels A “Current” View of AKAPs , 1999, Neuron.

[101]  John D. Scott,et al.  Association of the type 1 protein phosphatase PP1 with the A-kinase anchoring protein AKAP220 , 1999, Current Biology.

[102]  John D. Scott,et al.  The molecular basis for protein kinase A anchoring revealed by solution NMR , 1998, Nature Structural Biology.

[103]  A. Thorburn,et al.  Membrane‐targeting sequences on AKAP79 bind phosphatidylinositol‐4,5‐bisphosphate , 1998, The EMBO journal.

[104]  L. Langeberg,et al.  Anchoring of protein kinase A facilitates hormone-mediated insulin secretion. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[105]  Susan S. Taylor,et al.  Identification of a Novel Protein Kinase A Anchoring Protein That Binds Both Type I and Type II Regulatory Subunits* , 1997, The Journal of Biological Chemistry.

[106]  L. Langeberg,et al.  Coordination of Three Signaling Enzymes by AKAP79, a Mammalian Scaffold Protein , 1996, Science.

[107]  K. M. Popov,et al.  Diversity of the Pyruvate Dehydrogenase Kinase Gene Family in Humans * , 1995, The Journal of Biological Chemistry.

[108]  D. Johnson,et al.  Regulation of cAMP-dependent protein kinase: enzyme activation without dissociation. , 1995, Biochemistry.

[109]  L. Langeberg,et al.  Association of protein kinase A and protein phosphatase 2B with a common anchoring protein. , 1995, Science.

[110]  R. Cone,et al.  Localization of the cAMP-dependent protein kinase to the postsynaptic densities by A-kinase anchoring proteins. Characterization of AKAP 79. , 1992, The Journal of biological chemistry.

[111]  I. Fraser,et al.  Association of the type II cAMP-dependent protein kinase with a human thyroid RII-anchoring protein. Cloning and characterization of the RII-binding domain. , 1992, The Journal of biological chemistry.

[112]  S. Taylor,et al.  Identifying the molecular switches that determine whether (Rp)-cAMPS functions as an antagonist or an agonist in the activation of cAMP-dependent protein kinase I. , 1991, Biochemistry.

[113]  I. Fraser,et al.  Interaction of the regulatory subunit (RII) of cAMP-dependent protein kinase with RII-anchoring proteins occurs through an amphipathic helix binding motif. , 1991, The Journal of biological chemistry.

[114]  J. Scott,et al.  Type II regulatory subunit dimerization determines the subcellular localization of the cAMP-dependent protein kinase. , 1990, The Journal of biological chemistry.

[115]  U. Walter,et al.  High-affinity binding of the regulatory subunit (RII) of cAMP-dependent protein kinase to microtubule-associated and other cellular proteins. , 1984, Proceedings of the National Academy of Sciences of the United States of America.

[116]  W. Theurkauf,et al.  Molecular characterization of the cAMP-dependent protein kinase bound to microtubule-associated protein 2. , 1982, The Journal of biological chemistry.

[117]  S. Døskeland,et al.  Adenosine 3':5'-cyclic monophosphate-dependence of protein kinase isoenzymes from mouse liver. , 1976, The Biochemical journal.

[118]  A. Scherberich,et al.  Supplementary Information Supplementary Figure 1 , 2022 .

[119]  John D. Scott,et al.  Selective disruption of the AKAP signaling complexes. , 2015, Methods in molecular biology.

[120]  H. Schulman,et al.  The multifunctional calcium/calmodulin-dependent protein kinase: from form to function. , 1995, Annual review of physiology.

[121]  T. Pawson,et al.  Gravin Is a Transitory Effector of Polo-like Kinase 1 during Cell Division , 2022 .

[122]  L. Langeberg,et al.  THE EMBO JOURNAL EMBO , 2022 .