Channelrhodopsin-2 Localised to the Axon Initial Segment

The light-gated cation channel Channelrhodopsin-2 (ChR2) is a powerful and versatile tool for controlling neuronal activity. Currently available versions of ChR2 either distribute uniformly throughout the plasma membrane or are localised specifically to somatodendritic or synaptic domains. Localising ChR2 instead to the axon initial segment (AIS) could prove an extremely useful addition to the optogenetic repertoire, targeting the channel directly to the site of action potential initiation, and limiting depolarisation and associated calcium entry elsewhere in the neuron. Here, we describe a ChR2 construct that we localised specifically to the AIS by adding the ankyrinG-binding loop of voltage-gated sodium channels (NavII-III) to its intracellular terminus. Expression of ChR2-YFP-NavII-III did not significantly affect the passive or active electrical properties of cultured rat hippocampal neurons. However, the tiny ChR2 currents and small membrane depolarisations resulting from AIS targeting meant that optogenetic control of action potential firing with ChR2-YFP-NavII-III was unsuccessful in baseline conditions. We did succeed in stimulating action potentials with light in some ChR2-YFP-NavII-III-expressing neurons, but only when blocking KCNQ voltage-gated potassium channels. We discuss possible alternative approaches to obtaining precise control of neuronal spiking with AIS-targeted optogenetic constructs and propose potential uses for our ChR2-YFP-NavII-III probe where subthreshold modulation of action potential initiation is desirable.

[1]  Yuguo Yu,et al.  Properties of action-potential initiation in neocortical pyramidal cells: evidence from whole cell axon recordings. , 2007, Journal of neurophysiology.

[2]  Harunori Ohmori,et al.  Presynaptic activity regulates Na+ channel distribution at the axon initial segment , 2010, Nature.

[3]  K. Svoboda,et al.  Channelrhodopsin-2–assisted circuit mapping of long-range callosal projections , 2007, Nature Neuroscience.

[4]  Yuguo Yu,et al.  P/Q and N Channels Control Baseline and Spike-Triggered Calcium Levels in Neocortical Axons and Synaptic Boutons , 2010, The Journal of Neuroscience.

[5]  B. Bean,et al.  Subthreshold Sodium Current from Rapidly Inactivating Sodium Channels Drives Spontaneous Firing of Tuberomammillary Neurons , 2002, Neuron.

[6]  E. Isacoff,et al.  Light-activated ion channels for remote control of neuronal firing , 2004, Nature Neuroscience.

[7]  G. Stuber,et al.  Dopaminergic Terminals in the Nucleus Accumbens But Not the Dorsal Striatum Corelease Glutamate , 2010, The Journal of Neuroscience.

[8]  M. Grubb,et al.  Activity-dependent relocation of the axon initial segment fine-tunes neuronal excitability , 2010, Nature.

[9]  Douglas S Kim,et al.  Light-activated channels targeted to ON bipolar cells restore visual function in retinal degeneration , 2008, Nature Neuroscience.

[10]  Fudong Liu,et al.  Disruption of the Axon Initial Segment Cytoskeleton Is a New Mechanism for Neuronal Injury , 2009, The Journal of Neuroscience.

[11]  Arto V. Nurmikko,et al.  Pathway-Specific Feedforward Circuits between Thalamus and Neocortex Revealed by Selective Optical Stimulation of Axons , 2010, Neuron.

[12]  K. Deisseroth,et al.  Red-shifted optogenetic excitation: a tool for fast neural control derived from Volvox carteri , 2008, Nature Neuroscience.

[13]  A. M. Rush,et al.  Electrophysiological properties of two axonal sodium channels, Nav1.2 and Nav1.6, expressed in mouse spinal sensory neurones , 2005, The Journal of physiology.

[14]  E. Bamberg,et al.  Channelrhodopsin-2, a directly light-gated cation-selective membrane channel , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[15]  E. Bamberg,et al.  Light Activation of Channelrhodopsin-2 in Excitable Cells of Caenorhabditis elegans Triggers Rapid Behavioral Responses , 2005, Current Biology.

[16]  A T Barker,et al.  The history and basic principles of magnetic nerve stimulation. , 1999, Electroencephalography and clinical neurophysiology. Supplement.

[17]  G. Stuart,et al.  Site of Action Potential Initiation in Layer 5 Pyramidal Neurons , 2006, The Journal of Neuroscience.

[18]  H. Adesnik,et al.  Lateral competition for cortical space by layer-specific horizontal circuits , 2010, Nature.

[19]  K. Deisseroth,et al.  Ultrafast optogenetic control , 2010, Nature Neuroscience.

[20]  P. Fatt,et al.  Sequence of events in synaptic activation of a motoneurone. , 1957, Journal of neurophysiology.

[21]  M. Berridge,et al.  The versatility and universality of calcium signalling , 2000, Nature Reviews Molecular Cell Biology.

[22]  Konrad Lehmann,et al.  Visual Function in Mice with Photoreceptor Degeneration and Transgenic Expression of Channelrhodopsin 2 in Ganglion Cells , 2010, The Journal of Neuroscience.

[23]  V. Bennett,et al.  Ankyrin-binding proteins related to nervous system cell adhesion molecules: candidates to provide transmembrane and intercellular connections in adult brain , 1993, The Journal of cell biology.

[24]  S. Lambert,et al.  Identification of a Conserved Ankyrin-binding Motif in the Family of Sodium Channel α Subunits* , 2003, Journal of Biological Chemistry.

[25]  Juan José Garrido,et al.  A Targeting Motif Involved in Sodium Channel Clustering at the Axonal Initial Segment , 2003, Science.

[26]  Christophe Leterrier,et al.  Protein kinase CK2 contributes to the organization of sodium channels in axonal membranes by regulating their interactions with ankyrin G , 2008, The Journal of cell biology.

[27]  H. Chiel,et al.  Fast noninvasive activation and inhibition of neural and network activity by vertebrate rhodopsin and green algae channelrhodopsin. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[28]  F. Engert,et al.  Escape Behavior Elicited by Single, Channelrhodopsin-2-Evoked Spikes in Zebrafish Somatosensory Neurons , 2008, Current Biology.

[29]  E. Isacoff,et al.  Allosteric control of an ionotropic glutamate receptor with an optical switch , 2006, Nature chemical biology.

[30]  D. Johnston,et al.  Axonal Action-Potential Initiation and Na+ Channel Densities in the Soma and Axon Initial Segment of Subicular Pyramidal Neurons , 1996, The Journal of Neuroscience.

[31]  G. Tamás,et al.  Excitatory Effect of GABAergic Axo-Axonic Cells in Cortical Microcircuits , 2006, Science.

[32]  K. Svoboda,et al.  Sparse optical microstimulation in barrel cortex drives learned behaviour in freely moving mice , 2008, Nature.

[33]  Juha Voipio,et al.  GABAergic Depolarization of the Axon Initial Segment in Cortical Principal Neurons Is Caused by the Na–K–2Cl Cotransporter NKCC1 , 2008, The Journal of Neuroscience.

[34]  A. Dizhoor,et al.  Ectopic Expression of a Microbial-Type Rhodopsin Restores Visual Responses in Mice with Photoreceptor Degeneration , 2006, Neuron.

[35]  V. Bennett,et al.  Tyrosine Phosphorylation at a Site Highly Conserved in the L1 Family of Cell Adhesion Molecules Abolishes Ankyrin Binding and Increases Lateral Mobility of Neurofascin , 1997, The Journal of cell biology.

[36]  E. Boyden,et al.  Multiple-Color Optical Activation, Silencing, and Desynchronization of Neural Activity, with Single-Spike Temporal Resolution , 2007, PloS one.

[37]  Johannes J. Letzkus,et al.  Axon Initial Segment Kv1 Channels Control Axonal Action Potential Waveform and Synaptic Efficacy , 2007, Neuron.

[38]  K. Deisseroth,et al.  Millisecond-timescale, genetically targeted optical control of neural activity , 2005, Nature Neuroscience.

[39]  Michael A. Henninger,et al.  High-Performance Genetically Targetable Optical Neural Silencing via Light-Driven Proton Pumps , 2010 .

[40]  B. Sakmann,et al.  Active propagation of somatic action potentials into neocortical pyramidal cell dendrites , 1994, Nature.

[41]  K. Svoboda,et al.  Myosin-dependent targeting of transmembrane proteins to neuronal dendrites , 2009, Nature Neuroscience.

[42]  K. Svoboda,et al.  The subcellular organization of neocortical excitatory connections , 2009, Nature.

[43]  M. Poo,et al.  A Selective Filter for Cytoplasmic Transport at the Axon Initial Segment , 2009, Cell.

[44]  Arnd Roth,et al.  Initiation of simple and complex spikes in cerebellar Purkinje cells , 2010, The Journal of physiology.

[45]  O. Kiehn,et al.  Activation of groups of excitatory neurons in the mammalian spinal cord or hindbrain evokes locomotion , 2010, Nature Neuroscience.

[46]  J. Nerbonne,et al.  The FGF14F145S Mutation Disrupts the Interaction of FGF14 with Voltage-Gated Na+ Channels and Impairs Neuronal Excitability , 2007, The Journal of Neuroscience.

[47]  G. Ellis‐Davies,et al.  Caged compounds: photorelease technology for control of cellular chemistry and physiology , 2007, Nature Methods.

[48]  André Fiala,et al.  Behavioral Neuroscience , 2022 .

[49]  A. Vallbo,et al.  Intraneural microstimulation in man. Its relation to specificity of tactile sensations. , 1987, Brain : a journal of neurology.

[50]  B. Kampa,et al.  Action potential generation requires a high sodium channel density in the axon initial segment , 2008, Nature Neuroscience.

[51]  K. Deisseroth,et al.  Phasic Firing in Dopaminergic Neurons Is Sufficient for Behavioral Conditioning , 2009, Science.

[52]  Peter Hegemann,et al.  Two open states with progressive proton selectivities in the branched channelrhodopsin-2 photocycle. , 2010, Biophysical journal.

[53]  Peter Somogyi,et al.  Interneurons hyperpolarize pyramidal cells along their entire somatodendritic axis , 2009, Nature Neuroscience.

[54]  M. Rasband,et al.  AnkyrinG is required for maintenance of the axon initial segment and neuronal polarity , 2008, The Journal of cell biology.

[55]  T. Dick,et al.  Light-Induced Rescue of Breathing after Spinal Cord Injury , 2008, The Journal of Neuroscience.

[56]  F. Gage,et al.  Neurons born in the adult dentate gyrus form functional synapses with target cells , 2008, Nature Neuroscience.

[57]  Yusuf Tufail,et al.  Remote Excitation of Neuronal Circuits Using Low-Intensity, Low-Frequency Ultrasound , 2008, PloS one.

[58]  Toru Ishizuka,et al.  Visual Properties of Transgenic Rats Harboring the Channelrhodopsin-2 Gene Regulated by the Thy-1.2 Promoter , 2009, PloS one.

[59]  A. Brachet,et al.  Voltage-gated sodium channel organization in neurons: Protein interactions and trafficking pathways , 2010, Neuroscience Letters.

[60]  Raag D. Airan,et al.  Optogenetic interrogation of neural circuits: technology for probing mammalian brain structures , 2010, Nature Protocols.

[61]  G. Feng,et al.  Next-Generation Optical Technologies for Illuminating Genetically Targeted Brain Circuits , 2006, The Journal of Neuroscience.

[62]  Dirk Trauner,et al.  New photochemical tools for controlling neuronal activity , 2009, Current Opinion in Neurobiology.

[63]  E. Bamberg,et al.  Structural guidance of the photocycle of channelrhodopsin-2 by an interhelical hydrogen bond. , 2010, Biochemistry.

[64]  M. Rasband,et al.  The functional organization and assembly of the axon initial segment , 2008, Current Opinion in Neurobiology.

[65]  T. Sejnowski,et al.  A model of spike initiation in neocortical pyramidal neurons , 1995, Neuron.

[66]  Thomas G. Oertner,et al.  Optical induction of plasticity at single synapses reveals input-specific accumulation of αCaMKII , 2008, Proceedings of the National Academy of Sciences.

[67]  M. Merello,et al.  Deep Brain Stimulation of the Subthalamic Nucleus for the Treatment of Parkinson's Disease , 2008 .

[68]  E. J. Tehovnik,et al.  Direct and indirect activation of cortical neurons by electrical microstimulation. , 2006, Journal of neurophysiology.

[69]  Elior Peles,et al.  Postsynaptic Density-93 Clusters Kv1 Channels at Axon Initial Segments Independently of Caspr2 , 2008, The Journal of Neuroscience.

[70]  Vann Bennett,et al.  AnkyrinG Is Required for Clustering of Voltage-gated Na Channels at Axon Initial Segments and for Normal Action Potential Firing , 1998, The Journal of cell biology.

[71]  W. N. Ross,et al.  Na+ imaging reveals little difference in action potential–evoked Na+ influx between axon and soma , 2010, Nature Neuroscience.

[72]  P. Somogyi,et al.  A new type of specific interneuron in the monkey hippocampus forming synapses exclusively with the axon initial segments of pyramidal cells , 1983, Brain Research.

[73]  M. Zylka,et al.  Mrgprd-Expressing Polymodal Nociceptive Neurons Innervate Most Known Classes of Substantia Gelatinosa Neurons , 2009, The Journal of Neuroscience.

[74]  Feng Zhang,et al.  Multimodal fast optical interrogation of neural circuitry , 2007, Nature.

[75]  L. Trussell,et al.  Axon Initial Segment Ca2+ Channels Influence Action Potential Generation and Timing , 2009, Neuron.

[76]  Steve M. Potter,et al.  How to Culture, Record and Stimulate Neuronal Networks on Micro-electrode Arrays (MEAs) , 2010, Journal of visualized experiments : JoVE.

[77]  W. C. Hall,et al.  High-speed mapping of synaptic connectivity using photostimulation in Channelrhodopsin-2 transgenic mice , 2007, Proceedings of the National Academy of Sciences.

[78]  M. Migliore,et al.  Functional significance of axonal Kv7 channels in hippocampal pyramidal neurons , 2008, Proceedings of the National Academy of Sciences.

[79]  S. Tillery,et al.  Transcranial Pulsed Ultrasound Stimulates Intact Brain Circuits , 2010, Neuron.

[80]  M. Fuortes,et al.  STEPS IN THE PRODUCTION OF MOTONEURON SPIKES , 1957, The Journal of general physiology.

[81]  Amanda J. Foust,et al.  Action Potentials Initiate in the Axon Initial Segment and Propagate through Axon Collaterals Reliably in Cerebellar Purkinje Neurons , 2010, The Journal of Neuroscience.

[82]  Yousheng Shu,et al.  Distinct contributions of Nav1.6 and Nav1.2 in action potential initiation and backpropagation , 2009, Nature Neuroscience.

[83]  K. Deisseroth,et al.  eNpHR: a Natronomonas halorhodopsin enhanced for optogenetic applications , 2008, Brain cell biology.

[84]  M. Häusser,et al.  Initiation and spread of sodium action potentials in cerebellar purkinje cells , 1994, Neuron.

[85]  I. Mellman,et al.  A diffusion barrier maintains distribution of membrane proteins in polarized neurons , 1999, Nature.

[86]  J. Garrido,et al.  Endocytotic elimination and domain-selective tethering constitute a potential mechanism of protein segregation at the axonal initial segment , 2004, The Journal of cell biology.

[87]  D. McCormick,et al.  Cortical Action Potential Backpropagation Explains Spike Threshold Variability and Rapid-Onset Kinetics , 2008, The Journal of Neuroscience.

[88]  Murtaza Z Mogri,et al.  Optical Deconstruction of Parkinsonian Neural Circuitry , 2009, Science.

[89]  Murtaza Z Mogri,et al.  Targeting and Readout Strategies for Fast Optical Neural Control In Vitro and In Vivo , 2007, The Journal of Neuroscience.

[90]  N. Nukina,et al.  Functional reciprocity between Na+ channel Nav1.6 and β1 subunits in the coordinated regulation of excitability and neurite outgrowth , 2010, Proceedings of the National Academy of Sciences.

[91]  Benjamin R. Arenkiel,et al.  In Vivo Light-Induced Activation of Neural Circuitry in Transgenic Mice Expressing Channelrhodopsin-2 , 2007, Neuron.

[92]  Ethan M. Goldberg,et al.  Electrogenic Tuning of the Axon Initial Segment , 2009, The Neuroscientist : a review journal bringing neurobiology, neurology and psychiatry.

[93]  M. Grubb,et al.  Building and maintaining the axon initial segment , 2010, Current Opinion in Neurobiology.

[94]  M. Rasband,et al.  βIV spectrin is recruited to axon initial segments and nodes of Ranvier by ankyrinG , 2007, The Journal of cell biology.

[95]  Jürgen-Markus Sobotzik,et al.  AnkyrinG is required to maintain axo-dendritic polarity in vivo , 2009, Proceedings of the National Academy of Sciences.

[96]  Matthew N. Rasband,et al.  The axon initial segment and the maintenance of neuronal polarity , 2010, Nature Reviews Neuroscience.

[97]  Vann Bennett,et al.  A Common Ankyrin-G-Based Mechanism Retains KCNQ and NaV Channels at Electrically Active Domains of the Axon , 2006, The Journal of Neuroscience.

[98]  J. Eccles,et al.  The generation of impulses in motoneurones , 1957, The Journal of physiology.

[99]  T. Oertner,et al.  Optical induction of synaptic plasticity using a light-sensitive channel , 2007, Nature Methods.

[100]  Blake S. Wilson,et al.  Cochlear implants: A remarkable past and a brilliant future , 2008, Hearing Research.

[101]  Aristides B. Arrenberg,et al.  Optogenetic Localization and Genetic Perturbation of Saccade-Generating Neurons in Zebrafish , 2010, The Journal of Neuroscience.

[102]  J. Trimmer,et al.  Requirement of subunit co-assembly and ankyrin-G for M-channel localization at the axon initial segment , 2007, Journal of Cell Science.

[103]  Michael Z. Lin,et al.  Characterization of engineered channelrhodopsin variants with improved properties and kinetics. , 2009, Biophysical journal.

[104]  S. Mennerick,et al.  Action potential initiation and propagation in CA3 pyramidal axons. , 2007, Journal of neurophysiology.

[105]  K. Deisseroth,et al.  Molecular and Cellular Approaches for Diversifying and Extending Optogenetics , 2010, Cell.