Near-IR wide-field-of-view Huygens metalens for outdoor imaging applications

Abstract The ongoing effort to implement compact and cheap optical systems is the main driving force for the recent flourishing research in the field of optical metalenses. Metalenses are a type of metasurface, used for focusing and imaging applications, and are implemented based on the nanopatterning of an optical surface. The challenge faced by metalens research is to reach high levels of performance using simple fabrication methods suitable for mass production. In this paper, we present a Huygens nanoantenna-based metalens, designed for outdoor photographic/surveillance applications in the near infrared. We show that good imaging quality can be obtained over a field of view as large as ±15°. This first successful implementation of metalenses for outdoor imaging applications is expected to provide insight and inspiration for future metalens imaging applications.

[1]  Xinan Liang,et al.  A Metalens with a Near-Unity Numerical Aperture. , 2018, Nano letters.

[2]  Igal Brener,et al.  Polarization-Independent Silicon Metadevices for Efficient Optical Wavefront Control. , 2015, Nano letters.

[3]  D Mendlovic,et al.  Efficiency analysis of diffractive lenses. , 2001, Journal of the Optical Society of America. A, Optics, image science, and vision.

[4]  Federico Capasso,et al.  Immersion Meta-Lenses at Visible Wavelengths for Nanoscale Imaging. , 2017, Nano letters.

[5]  Edmond Cambril,et al.  Imaging with blazed-binary diffractive elements , 2002 .

[6]  Highly tunable elastic dielectric metasurface lenses , 2016 .

[7]  Erez Hasman,et al.  Polarization dependent focusing lens by use of quantized Pancharatnam–Berry phase diffractive optics , 2003 .

[8]  Philippe Lalanne,et al.  Waveguiding in blazed-binary diffractive elements , 1999 .

[9]  Seyedeh Mahsa Kamali,et al.  Controlling the sign of chromatic dispersion in diffractive optics , 2017, 1701.07178.

[10]  Seyedeh Mahsa Kamali,et al.  Multiwavelength polarization insensitive lenses based on dielectric metasurfaces with meta-molecules , 2016, 1601.05847.

[11]  澤田 昌毅,et al.  製品技術紹介 回折光学素子--Diffractive Optics , 1999 .

[12]  Shlomo Ruschin,et al.  Fast method for physical optics propagation of high-numerical-aperture beams. , 2004, Journal of the Optical Society of America. A, Optics, image science, and vision.

[13]  J. Osmond,et al.  Electrically Driven Varifocal Silicon Metalens , 2018, ACS Photonics.

[14]  B. Luk’yanchuk,et al.  Optically resonant dielectric nanostructures , 2016, Science.

[15]  Federico Capasso,et al.  Meta-Lens Doublet in the Visible Region. , 2017, Nano letters.

[16]  Dispersion controlling meta-lens at visible frequency. , 2017, Optics express.

[17]  P. Genevet,et al.  Multiwavelength achromatic metasurfaces by dispersive phase compensation , 2014, Science.

[18]  Andrea Alù,et al.  A Reconfigurable Active Huygens' Metalens. , 2017, Advanced materials.

[19]  Federico Capasso,et al.  Broadband high-efficiency dielectric metasurfaces for the visible spectrum , 2016, Proceedings of the National Academy of Sciences.

[20]  A. Arbabi,et al.  Subwavelength-thick lenses with high numerical apertures and large efficiency based on high-contrast transmitarrays , 2014, Nature Communications.

[21]  Warren J. Smith Modern Lens Design , 1992 .

[22]  W. T. Chen,et al.  Metalenses at visible wavelengths: Diffraction-limited focusing and subwavelength resolution imaging , 2016, Science.

[23]  N. Yu,et al.  Broadband achromatic dielectric metalenses , 2018, Light, science & applications.

[24]  Achromatic metasurfaces by dispersive phase compensation , 2015, 2015 IEEE Photonics Conference (IPC).

[25]  G. M. Morris,et al.  Design of a wide field diffractive landscape lens. , 1989, Applied optics.

[26]  Prasad P. Iyer,et al.  Uniform Thermo-Optic Tunability of Dielectric Metalenses , 2018, Physical Review Applied.

[27]  Bo Han Chen,et al.  A broadband achromatic metalens in the visible , 2018, Nature Nanotechnology.

[28]  Tal Ellenbogen,et al.  Composite functional metasurfaces for multispectral achromatic optics , 2016, Nature Communications.

[29]  Andrei Faraon,et al.  MEMS-tunable dielectric metasurface lens , 2017, Nature Communications.

[30]  Seyedeh Mahsa Kamali,et al.  Highly tunable elastic dielectric metasurface lenses , 2016, 1604.03597.

[31]  Yuri S. Kivshar,et al.  High‐Efficiency Dielectric Huygens’ Surfaces , 2015 .

[32]  J. Goodman Introduction to Fourier optics , 1969 .

[33]  Andrei Faraon,et al.  Miniature optical planar camera based on a wide-angle metasurface doublet corrected for monochromatic aberrations , 2016, Nature Communications.

[34]  B. Shen,et al.  Broadband imaging with one planar diffractive lens , 2017, Scientific Reports.

[35]  Joris J.J. Dirckx,et al.  Real-time geometric lens distortion correction using a graphics processing unit , 2012 .

[36]  Rajesh Menon,et al.  Chromatic-aberration-corrected diffractive lenses for ultra-broadband focusing , 2016, Scientific Reports.

[37]  Uriel Levy,et al.  Optimizing the spectral range of diffractive metalenses for polychromatic imaging applications. , 2017, Optics express.

[38]  Zhi Ning Chen,et al.  An ultrathin microwave Huygens' metasurface lens , 2015, 2015 IEEE 4th Asia-Pacific Conference on Antennas and Propagation (APCAP).

[39]  Federico Capasso,et al.  Adaptive metalenses with simultaneous electrical control of focal length, astigmatism, and shift , 2018, Science Advances.