An Extended Continuation Problem for Bifurcation Analysis in the Presence of Constraints
暂无分享,去创建一个
[1] Y. Kuznetsov. Elements of Applied Bifurcation Theory , 2023, Applied Mathematical Sciences.
[2] Louis A. Romero,et al. Bifurcation Tracking Algorithms and Software for Large Scale Applications , 2005, Int. J. Bifurc. Chaos.
[3] Thomas F. Fairgrieve,et al. AUTO 2000 : CONTINUATION AND BIFURCATION SOFTWARE FOR ORDINARY DIFFERENTIAL EQUATIONS (with HomCont) , 1997 .
[4] Willy Govaerts,et al. Numerical Continuation of Bifurcations of Limit Cycles in MATLAB , 2005, SIAM J. Sci. Comput..
[5] Frank Schilder,et al. Numerical Bifurcation of Hamiltonian Relative Periodic Orbits , 2009, SIAM J. Appl. Dyn. Syst..
[6] Rafael de la Llave,et al. A Parameterization Method for the Computation of Invariant Tori and Their Whiskers in Quasi-Periodic Maps: Explorations and Mechanisms for the Breakdown of Hyperbolicity , 2007, SIAM J. Appl. Dyn. Syst..
[7] Harry Dankowicz,et al. TC-HAT: A Novel Toolbox for the Continuation of Periodic Trajectories in Hybrid Dynamical Systems , 2008, SIAM J. Appl. Dyn. Syst..
[8] Bernd Krauskopf,et al. A Lin's method approach to finding and continuing heteroclinic connections involving periodic orbits , 2008 .
[9] Harry Dankowicz,et al. Bifurcation Analysis of a Microactuator Using a New Toolbox for Continuation of Hybrid System Trajectories , 2007 .
[10] Harry Dankowicz,et al. Energy Transfer in Vibratory Systems with Friction Exhibiting Low-velocity Collisions , 2008 .
[11] Willy Govaerts,et al. MATCONT: A MATLAB package for numerical bifurcation analysis of ODEs , 2003, TOMS.
[12] Björn Sandstede,et al. A numerical toolbox for homoclinic bifurcation analysis , 1996 .
[13] H. Schwetlick,et al. Zur Lösung parameterabhängiger nichtlinearer Gleichungen mit singulären Jacobi-Matrizen , 1978 .
[14] Frank Schilder,et al. Computing Arnol′d tongue scenarios , 2007, J. Comput. Phys..
[15] Gábor Stépán,et al. Continuation of Bifurcations in Periodic Delay-Differential Equations Using Characteristic Matrices , 2006, SIAM J. Sci. Comput..
[16] Michael E. Henderson,et al. Multiple Parameter Continuation: Computing Implicitly Defined k-Manifolds , 2002, Int. J. Bifurc. Chaos.
[17] Claudia Wulff,et al. Numerical Continuation of Symmetric Periodic Orbits , 2006, SIAM J. Appl. Dyn. Syst..
[18] Yuri A. Kuznetsov,et al. SlideCont: An Auto97 driver for bifurcation analysis of Filippov systems , 2005, TOMS.
[19] Dirk Roose,et al. Numerical bifurcation analysis of delay differential equations using DDE-BIFTOOL , 2002, TOMS.
[20] Rafael de la Llave,et al. A parameterization method for the computation of invariant tori andtheir whiskers in quasi-periodic maps: Numerical algorithms , 2006 .
[21] Àlex Haro,et al. A Parameterization Method for the Computation of Invariant Tori and Their Whiskers in Quasi-Periodic Maps: Explorations and Mechanisms for the Breakdown of Hyperbolicity , 2006, SIAM J. Appl. Dyn. Syst..
[22] Nicholas J. Higham,et al. Matlab guide , 2000 .
[23] M. di Bernardo,et al. Bifurcations of dynamical systems with sliding: derivation of normal-form mappings , 2002 .
[24] Gerald Moore,et al. Floquet Theory as a Computational Tool , 2004, SIAM J. Numer. Anal..