An Extended Continuation Problem for Bifurcation Analysis in the Presence of Constraints

This paper presents an extended formulation of the basic continuation problem for implicitly-defined, embedded manifolds in R n . The formulation is chosen so as to allow for the arbitrary imposition of additional constraints during continuation and the restriction to selective parametrizations of the corresponding higher-co-dimension solution manifolds. In particular, the formalism is demonstrated to clearly separate between the essential functionality required of core routines in application-oriented continuation packages, on the one hand; and the functionality provided by auxiliary toolboxes that encode classes of continuation problems and user-definitions that narrowly focus on a particular problem implementation, on the other hand. Several examples are chosen to illustrate the formalism and its implementation in the recently developed continuation package COCO and auxiliary toolboxes, including continuation of families of periodic orbits in a hybrid dynamical system with impacts and friction as well as detection and constrained continuation of selected degeneracies characteristic of such systems, such as grazing and switching-sliding bifurcations.Copyright © 2009 by ASME

[1]  Y. Kuznetsov Elements of Applied Bifurcation Theory , 2023, Applied Mathematical Sciences.

[2]  Louis A. Romero,et al.  Bifurcation Tracking Algorithms and Software for Large Scale Applications , 2005, Int. J. Bifurc. Chaos.

[3]  Thomas F. Fairgrieve,et al.  AUTO 2000 : CONTINUATION AND BIFURCATION SOFTWARE FOR ORDINARY DIFFERENTIAL EQUATIONS (with HomCont) , 1997 .

[4]  Willy Govaerts,et al.  Numerical Continuation of Bifurcations of Limit Cycles in MATLAB , 2005, SIAM J. Sci. Comput..

[5]  Frank Schilder,et al.  Numerical Bifurcation of Hamiltonian Relative Periodic Orbits , 2009, SIAM J. Appl. Dyn. Syst..

[6]  Rafael de la Llave,et al.  A Parameterization Method for the Computation of Invariant Tori and Their Whiskers in Quasi-Periodic Maps: Explorations and Mechanisms for the Breakdown of Hyperbolicity , 2007, SIAM J. Appl. Dyn. Syst..

[7]  Harry Dankowicz,et al.  TC-HAT: A Novel Toolbox for the Continuation of Periodic Trajectories in Hybrid Dynamical Systems , 2008, SIAM J. Appl. Dyn. Syst..

[8]  Bernd Krauskopf,et al.  A Lin's method approach to finding and continuing heteroclinic connections involving periodic orbits , 2008 .

[9]  Harry Dankowicz,et al.  Bifurcation Analysis of a Microactuator Using a New Toolbox for Continuation of Hybrid System Trajectories , 2007 .

[10]  Harry Dankowicz,et al.  Energy Transfer in Vibratory Systems with Friction Exhibiting Low-velocity Collisions , 2008 .

[11]  Willy Govaerts,et al.  MATCONT: A MATLAB package for numerical bifurcation analysis of ODEs , 2003, TOMS.

[12]  Björn Sandstede,et al.  A numerical toolbox for homoclinic bifurcation analysis , 1996 .

[13]  H. Schwetlick,et al.  Zur Lösung parameterabhängiger nichtlinearer Gleichungen mit singulären Jacobi-Matrizen , 1978 .

[14]  Frank Schilder,et al.  Computing Arnol′d tongue scenarios , 2007, J. Comput. Phys..

[15]  Gábor Stépán,et al.  Continuation of Bifurcations in Periodic Delay-Differential Equations Using Characteristic Matrices , 2006, SIAM J. Sci. Comput..

[16]  Michael E. Henderson,et al.  Multiple Parameter Continuation: Computing Implicitly Defined k-Manifolds , 2002, Int. J. Bifurc. Chaos.

[17]  Claudia Wulff,et al.  Numerical Continuation of Symmetric Periodic Orbits , 2006, SIAM J. Appl. Dyn. Syst..

[18]  Yuri A. Kuznetsov,et al.  SlideCont: An Auto97 driver for bifurcation analysis of Filippov systems , 2005, TOMS.

[19]  Dirk Roose,et al.  Numerical bifurcation analysis of delay differential equations using DDE-BIFTOOL , 2002, TOMS.

[20]  Rafael de la Llave,et al.  A parameterization method for the computation of invariant tori andtheir whiskers in quasi-periodic maps: Numerical algorithms , 2006 .

[21]  Àlex Haro,et al.  A Parameterization Method for the Computation of Invariant Tori and Their Whiskers in Quasi-Periodic Maps: Explorations and Mechanisms for the Breakdown of Hyperbolicity , 2006, SIAM J. Appl. Dyn. Syst..

[22]  Nicholas J. Higham,et al.  Matlab guide , 2000 .

[23]  M. di Bernardo,et al.  Bifurcations of dynamical systems with sliding: derivation of normal-form mappings , 2002 .

[24]  Gerald Moore,et al.  Floquet Theory as a Computational Tool , 2004, SIAM J. Numer. Anal..