Contact research strategy for emerging molybdenum disulfide and other two-dimensional field-effect transistors

Layered two-dimensional (2D) semiconducting transition metal dichalcogenides (TMDs) have been widely isolated, synthesized, and characterized recently. Numerous 2D materials are identified as the potential candidates as channel materials for future thin film technology due to their high mobility and the exhibiting bandgaps. While many TMD filed-effect transistors (FETs) have been widely demonstrated along with a significant progress to clearly understand the device physics, large contact resistance at metal/semiconductor interface still remain a challenge. From 2D device research point of view, how to minimize the Schottky barrier effects on contacts thus reduce the contact resistance of metals on 2D materials is very critical for the further development of the field. Here, we present a review of contact research on molybdenum disulfide and other TMD FETs from the fundamental understanding of metal-semiconductor interfaces on 2D materials. A clear contact research strategy on 2D semiconducting materials is developed for future high-performance 2D FETs with aggressively scaled dimensions.

[1]  Heung Cho Ko,et al.  Highly flexible and transparent multilayer MoS2 transistors with graphene electrodes. , 2013, Small.

[2]  Gang Lu,et al.  Optical identification of single- and few-layer MoS₂ sheets. , 2012, Small.

[3]  Phaedon Avouris,et al.  Chemical doping and electron-hole conduction asymmetry in graphene devices. , 2008, Nano letters.

[4]  Fei Wang,et al.  Electron-doping-enhanced trion formation in monolayer molybdenum disulfide functionalized with cesium carbonate. , 2014, ACS nano.

[5]  S. Larentis,et al.  Band offset and negative compressibility in graphene-MoS2 heterostructures. , 2014, Nano letters.

[6]  Seung Joo Lee,et al.  Large current modulation and spin-dependent tunneling of vertical graphene/MoS2 heterostructures. , 2013, ACS nano.

[7]  Kyeongjae Cho,et al.  Metal contacts on physical vapor deposited monolayer MoS2. , 2013, ACS nano.

[8]  Harold S. Park,et al.  Mechanical properties of MoS2/graphene heterostructures , 2014, 1405.3028.

[9]  Peide D. Ye,et al.  ${\rm MoS}_{2}$ Field-Effect Transistors With Graphene/Metal Heterocontacts , 2014, IEEE Electron Device Letters.

[10]  Stephen McDonnell,et al.  Defect-dominated doping and contact resistance in MoS2. , 2014, ACS nano.

[11]  Lain-Jong Li,et al.  Highly flexible MoS2 thin-film transistors with ion gel dielectrics. , 2012, Nano letters.

[12]  Thomas F. Kent,et al.  p-type doping of MoS2 thin films using Nb , 2014 .

[13]  A. Kis,et al.  Nonvolatile memory cells based on MoS2/graphene heterostructures. , 2013, ACS nano.

[14]  J. Brink,et al.  Doping graphene with metal contacts. , 2008, Physical review letters.

[15]  R. Fivaz,et al.  Mobility of Charge Carriers in Semiconducting Layer Structures , 1967 .

[16]  Mengwei Si,et al.  Statistical study of deep submicron dual-gated field-effect transistors on monolayer chemical vapor deposition molybdenum disulfide films. , 2013, Nano letters.

[17]  Yuchen Du,et al.  MoS2 Field-Effec t Transistors With Graphene/ Metal Heterocontacts , 2014 .

[18]  A. Splendiani,et al.  Emerging photoluminescence in monolayer MoS2. , 2010, Nano letters.

[19]  Deep Jariwala,et al.  Graphene synthesis and band gap opening. , 2011, Journal of nanoscience and nanotechnology.

[20]  Youngki Yoon,et al.  How good can monolayer MoS₂ transistors be? , 2011, Nano letters.

[21]  Charge transfer induced polarity switching in carbon nanotube transistors. , 2005, Nano letters.

[22]  Magneto-transport in MoS2: phase coherence, spin-orbit scattering, and the hall factor. , 2013, ACS nano.

[23]  Kaustav Banerjee,et al.  High-performance MoS2 transistors with low-resistance molybdenum contacts , 2014 .

[24]  C. Hu,et al.  Field-effect transistors built from all two-dimensional material components. , 2014, ACS nano.

[25]  D. Schroder Semiconductor Material and Device Characterization , 1990 .

[26]  J. Appenzeller,et al.  High performance multilayer MoS2 transistors with scandium contacts. , 2013, Nano letters.

[27]  Daoben Zhu,et al.  Chemical doping of graphene , 2011 .

[28]  Yoshihiro Iwasa,et al.  Ambipolar MoS2 thin flake transistors. , 2012, Nano letters.

[29]  A. Javey,et al.  High-performance single layered WSe₂ p-FETs with chemically doped contacts. , 2012, Nano letters.

[30]  X. Guan,et al.  First-principles investigation on bonding formation and electronic structure of metal-graphene contacts , 2009 .

[31]  K. Banerjee,et al.  MoS₂ field-effect transistor for next-generation label-free biosensors. , 2014, ACS nano.

[32]  P. Kim,et al.  Experimental observation of the quantum Hall effect and Berry's phase in graphene , 2005, Nature.

[33]  Y. J. Zhang,et al.  Superconducting Dome in a Gate-Tuned Band Insulator , 2012, Science.

[34]  Michael S. Fuhrer,et al.  Realization and electrical characterization of ultrathin crystals of layered transition-metal dichalcogenides , 2007 .

[35]  J. Shan,et al.  Tightly bound trions in monolayer MoS2. , 2012, Nature materials.

[36]  P M Campbell,et al.  Chemical vapor sensing with monolayer MoS2. , 2013, Nano letters.

[37]  Qing Hua Wang,et al.  Tuning on-off current ratio and field-effect mobility in a MoS(2)-graphene heterostructure via Schottky barrier modulation. , 2014, ACS nano.

[38]  Jing Guo,et al.  Performance Limits of Monolayer Transition Metal Dichalcogenide Transistors , 2011, IEEE Transactions on Electron Devices.

[39]  Hisato Yamaguchi,et al.  Photoluminescence from chemically exfoliated MoS2. , 2011, Nano letters.

[40]  M. Kamalakar,et al.  High-performance molybdenum disulfide field-effect transistors with spin tunnel contacts. , 2014, ACS nano.

[41]  Zhiyuan Zeng,et al.  Electrochemically reduced single-layer MoS₂ nanosheets: characterization, properties, and sensing applications. , 2012, Small.

[42]  Soo Doo Chae,et al.  Transistors with chemically synthesized layered semiconductor WS2 exhibiting 105 room temperature modulation and ambipolar behavior , 2012, 1204.0474.

[43]  A. Javey,et al.  Air-stable surface charge transfer doping of MoS₂ by benzyl viologen. , 2014, Journal of the American Chemical Society.

[44]  Michael S. Fuhrer,et al.  High mobility ambipolar MoS2 field-effect transistors: Substrate and dielectric effects , 2012, 1212.6292.

[45]  Hua Zhang,et al.  Fabrication of single- and multilayer MoS2 film-based field-effect transistors for sensing NO at room temperature. , 2012, Small.

[46]  J. Kong,et al.  Integrated circuits based on bilayer MoS₂ transistors. , 2012, Nano letters.

[47]  Madan Dubey,et al.  Graphene/MoS2 hybrid technology for large-scale two-dimensional electronics. , 2014, Nano letters.

[48]  Jing Guo,et al.  Degenerate n-doping of few-layer transition metal dichalcogenides by potassium. , 2013, Nano letters.

[49]  A. Radenović,et al.  Single-layer MoS2 transistors. , 2011, Nature nanotechnology.

[50]  Zhixian Zhou,et al.  High mobility WSe2 p- and n-type field-effect transistors contacted by highly doped graphene for low-resistance contacts. , 2014, Nano letters.

[51]  Kangho Lee,et al.  High‐Performance Sensors Based on Molybdenum Disulfide Thin Films , 2013, Advanced materials.

[52]  Physical understanding of graphene/metal hetero-contacts to enhance MoS2 field-effect transistors performance , 2014, 72nd Device Research Conference.

[53]  Branimir Radisavljevic,et al.  Integrated circuits and logic operations based on single-layer MoS2. , 2011, ACS nano.

[54]  X. Duan,et al.  Highly efficient gate-tunable photocurrent generation in vertical heterostructures of layered materials. , 2013, Nature nanotechnology.

[55]  K. Novoselov,et al.  A roadmap for graphene , 2012, Nature.

[56]  Bin Liu,et al.  Sensing behavior of atomically thin-layered MoS2 transistors. , 2013, ACS nano.

[57]  Sunhee Lee,et al.  Suspended single-layer MoS2 devices , 2013 .

[58]  A Javey,et al.  Polymer functionalization for air-stable n-type carbon nanotube field-effect transistors. , 2001, Journal of the American Chemical Society.

[59]  H. Choi,et al.  Graphene versus ohmic metal as source-drain electrode for MoS₂ nanosheet transistor channel. , 2014, Small.

[60]  Hua Zhang,et al.  Single-layer MoS2 phototransistors. , 2012, ACS nano.

[61]  Mengwei Si,et al.  Switching mechanism in single-layer molybdenum disulfide transistors: an insight into current flow across Schottky barriers. , 2014, ACS nano.

[62]  Xu Cui,et al.  Flexible and transparent MoS2 field-effect transistors on hexagonal boron nitride-graphene heterostructures. , 2013, ACS nano.

[63]  Qiyuan He,et al.  Fabrication of flexible MoS2 thin-film transistor arrays for practical gas-sensing applications. , 2012, Small.

[64]  Ali Javey,et al.  MoS₂ P-type transistors and diodes enabled by high work function MoOx contacts. , 2014, Nano letters.

[65]  Hua Zhang,et al.  The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets. , 2013, Nature chemistry.

[66]  Andre K. Geim,et al.  The rise of graphene. , 2007, Nature materials.

[67]  Chunhai Fan,et al.  Single-layer MoS2-based nanoprobes for homogeneous detection of biomolecules. , 2013, Journal of the American Chemical Society.

[68]  P. Ye,et al.  Molecular Doping of Multilayer ${\rm MoS}_{2}$ Field-Effect Transistors: Reduction in Sheet and Contact Resistances , 2013, IEEE Electron Device Letters.

[69]  P. Kim,et al.  Energy band-gap engineering of graphene nanoribbons. , 2007, Physical review letters.

[70]  F. Guinea,et al.  The electronic properties of graphene , 2007, Reviews of Modern Physics.

[71]  Jing Guo,et al.  On Monolayer ${\rm MoS}_{2}$ Field-Effect Transistors at the Scaling Limit , 2013, IEEE Transactions on Electron Devices.

[72]  Zhiyuan Zeng,et al.  A Solution‐Processed Hole Extraction Layer Made from Ultrathin MoS2 Nanosheets for Efficient Organic Solar Cells , 2013 .

[73]  David Tománek,et al.  Designing electrical contacts to MoS2 monolayers: a computational study. , 2012, Physical review letters.

[74]  Yu-Chuan Lin,et al.  Growth of large-area and highly crystalline MoS2 thin layers on insulating substrates. , 2012, Nano letters.

[75]  Deji Akinwande,et al.  High-performance, highly bendable MoS2 transistors with high-k dielectrics for flexible low-power systems. , 2013, ACS nano.

[76]  H. Wen,et al.  Control of Schottky barriers in single layer MoS2 transistors with ferromagnetic contacts. , 2013, Nano letters.

[77]  L. Lauhon,et al.  Emerging device applications for semiconducting two-dimensional transition metal dichalcogenides. , 2014, ACS nano.

[78]  Wilman Tsai,et al.  Chloride molecular doping technique on 2D materials: WS2 and MoS2. , 2014, Nano letters.

[79]  Qing Hua Wang,et al.  Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. , 2012, Nature nanotechnology.

[80]  Hua Zhang,et al.  Rapid and reliable thickness identification of two-dimensional nanosheets using optical microscopy. , 2013, ACS nano.

[81]  A. Geim,et al.  Two-dimensional gas of massless Dirac fermions in graphene , 2005, Nature.

[82]  F. Xia,et al.  High-frequency, scaled graphene transistors on diamond-like carbon , 2011, Nature.

[83]  P. Ye,et al.  Channel length scaling of MoS2 MOSFETs. , 2012, ACS nano.

[84]  Yan Li,et al.  Electronic doping and scattering by transition metals on graphene , 2009, 0903.2837.

[85]  $\hbox{MoS}_{2}$ Nanoribbon Transistors: Transition From Depletion Mode to Enhancement Mode by Channel-Width Trimming , 2012, IEEE Electron Device Letters.

[86]  A. Sumant,et al.  All two-dimensional, flexible, transparent, and thinnest thin film transistor. , 2014, Nano letters.

[87]  K. Alam,et al.  Monolayer $\hbox{MoS}_{2}$ Transistors Beyond the Technology Road Map , 2012, IEEE Transactions on Electron Devices.

[88]  J. Shan,et al.  Atomically thin MoS₂: a new direct-gap semiconductor. , 2010, Physical review letters.

[89]  Lain-Jong Li,et al.  High‐Gain Phototransistors Based on a CVD MoS2 Monolayer , 2013, Advanced materials.

[90]  John Robertson,et al.  Sulfur vacancies in monolayer MoS2 and its electrical contacts , 2013 .