Systems with Hysteresis: Analysis, Identification and Control Using the Bouc-Wen Model

Preface. List of Figures. List of Tables. 1. Introduction 1.1 Objective and contents of the book 1.2 The Bouc-Wen model: origin and literature review 2. Physical consistency of the Bouc-Wen model 2.1 Introduction 2.2 BIBO stability of the Bouc-Wen model 2.2.1 The model 2.2.2 Problem statement 2.2.3 Classi ~ cation of the BIBO stable Bouc-Wen models 2.2.4 Practical remarks 2.3 Free motion of a hysteretic structural system 2.3.1 Problem statement 2.3.2 Asymptotic trajectories 2.3.3 Practical remarks 2.4 Passivity of the Bouc-Wen model 2.5 Limit cases 2.5.1 The limit case n = 1 2.5.2 The limit case (r) = 1 2.5.3 The limit case (r) = 0 2.5.4 The limit case ~ + - = 0 2.6 Conclusion 3 Forced limit cycle characterization of the Bouc-Wen model 3.1 Introduction 3.2 Problem statement 3.2.1 The class of inputs 3.2.2 Problem statement 3.3 The normalized Bouc-Wen model 3.4 Instrumental functions 3.5 Characterization of the asymptotic behavior of the hysteretic output 3.5.1 Technical Lemmas 3.5.2 Analytic description of the forced limit cycles for the Bouc-Wen model 3.6 Simulation example 3.7 Conclusion 4 Variation of the hysteresis loop with the Bouc-Wen model parameters 4.1 Introduction 4.2 Background results and methodology of the analysis 4.2.1 Background results 4.2.2 Methodology of the analysis 4.3 Maximal value of the hysteretic output 4.3.1 Variation with respect to 4.3.2 Variation with respect to 4.3.3 Variation with respect to n 4.3.4 Summary of the obtained results 4.4 Variation of the zero of the hysteretic output 4.4.1 Variation with respect to 4.4.2 Variation with respect to 4.4.3 Variation with respect to n 4.4.4 Summary of the obtained results 4.5 Variation of the hysteretic output with the Bouc-Wen model parameters 4.5.1 Variation with respect to 4.5.2 Variation with respect to 4.5.3 Variation with respect to n 4.5.4 Summary of the obtained results 4.6 The four regions of the Bouc-Wen model 4.6.1 The linear region Rl 4.6.2 The plastic region Rp 4.6.3 The transition regions Rt and Rs 4.7 Interpretation of the normalized Bouc-Wen model parameters 4.7.1 The parameters and 4.7.2 The parameter 4.7.3 The parameter n 4.8 Conclusion 5 Robust identification of the Bouc-Wen model parameters 5.1 Introduction 5.2 Parameter identi ~ cation for the Bouc-Wen model 5.2.1 Class of inputs 5.2.2 Identi ~ cation methodology 5.2.3 Robustness of the identi ~ cation method 5.2.4 Numerical simulation example 5.3 Modeling and identi ~ cation of a magnetorheological damper 5.3.1 Some insights into the viscous + Bouc-Wen model for shear mode MR dampers 5.3.2 Alternatives to the viscous + Bouc-Wen model for shear mode MR dampers 5.4 Identi ~ cation methodology for the viscous + Dahl model . . 5.4.1 Numerical simulations 5.5 Conclusion 6 Control of a system with a Bouc-Wen hysteresis 6.1 Introduction and problem statement 6.2 Control design and stability analysis 6.3 Numerical simulation 6.4 Conclusion A Mathematical background A.1 Existence and uniqueness of solutions A.2 Concepts of stability A.3 Passivity and absolute stability A.3.1 Passivity in mechanical systems A.3.2 Positive realness A.3.3 Sector functions A.3.4 Absolute stability A.4 Input-output properties References. Index.

[1]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[2]  P. Duhem Die dauernden Aenderungen und die Thermodynamik. I , 1897 .

[3]  P. Dahl A Solid Friction Model , 1968 .

[4]  Wilson A. Sutherland,et al.  Introduction to Metric and Topological Spaces , 1975 .

[5]  D.L. Elliott,et al.  Feedback systems: Input-output properties , 1976, Proceedings of the IEEE.

[6]  Y. Wen Method for Random Vibration of Hysteretic Systems , 1976 .

[7]  Y. K. Wen,et al.  Stochastic Equivalent Linearization for Hysteretic, Degrading, Multistory Strutctures , 1980 .

[8]  Y. Wen Equivalent Linearization for Hysteretic Systems Under Random Excitation , 1980 .

[9]  Thomas T. Baber,et al.  Random Vibration Hysteretic, Degrading Systems , 1981 .

[10]  Y. K. Wen,et al.  Stochastic Seismic Performance Evaluation of Buildings , 1983 .

[11]  Y. K. Wen,et al.  Stochastic Analysis of Liquefaction Under Earthquake Loading , 1983 .

[12]  Michael C. Constantinou,et al.  Hysteretic dampers in base isolation: Random approach , 1985 .

[13]  B. F. Spencer Reliability of Randomly Excited Hysteretic Structures , 1986 .

[14]  T. T. Baber,et al.  Modeling General Hysteresis Behavior and Random Vibration Application , 1986 .

[15]  Mayergoyz,et al.  Mathematical models of hysteresis. , 1986, Physical review letters.

[16]  Y. K. Wen,et al.  Random vibration of hysteretic systems under bi‐directional ground motions , 1986 .

[17]  O. G. Vinogradov,et al.  One application of Bouc's model for non-linear hysteresis , 1987 .

[18]  Aleksej F. Filippov,et al.  Differential Equations with Discontinuous Righthand Sides , 1988, Mathematics and Its Applications.

[19]  S. T. Mau,et al.  Systems Identification of Degrading Hysteretic Restoring Forces , 1988 .

[20]  S. Wiggins Introduction to Applied Nonlinear Dynamical Systems and Chaos , 1989 .

[21]  Fabio Casciati,et al.  Stochastic dynamics of hysteretic media , 1989 .

[22]  Andrei M. Reinhorn,et al.  Teflon Bearings in Base Isolation II: Modeling , 1990 .

[23]  Hiroshi Katukura,et al.  Markovian Hysteretic Characteristics of Structures , 1990 .

[24]  R. V. Roy,et al.  Chaotic and stochastic dynamics for a nonlinear structural system with hysteresis and degradation , 1991 .

[25]  Michael C. Constantinou,et al.  Study of wire rope systems for seismic protection of equipment in buildings , 1992 .

[26]  C. Loh,et al.  A three-stage identification approach for hysteretic systems , 1993 .

[27]  Carlos Canudas de Wit,et al.  A survey of models, analysis tools and compensation methods for the control of machines with friction , 1994, Autom..

[28]  Zhang Yigong,et al.  Nonlinear structural identification using extended kalman filter , 1994 .

[29]  Chin-Hsiung Loh,et al.  Probabilistic evaluation of liquefaction potential under earthquake loading , 1995 .

[30]  A. M. Chandler,et al.  Stochastic linearization of inelastic seismic torsional response: formulation and case studies , 1995 .

[31]  Greg Foliente,et al.  Hysteresis Modeling of Wood Joints and Structural Systems , 1995 .

[32]  Alex H. Barbat,et al.  Active Control of Nonlinear Base-Isolated Buildings , 1995 .

[33]  T. Low,et al.  Modeling of a three-layer piezoelectric bimorph beam with hysteresis , 1995 .

[34]  Zhikun Hou,et al.  First-passage study and stationary response analysis of a BWB hysteresis model using quasi-conservative stochastic averaging method , 1995 .

[35]  Robert D. Hanson,et al.  Electrorheological Dampers, Part I: Analysis and Design , 1996 .

[36]  Paolo Emilio Pinto,et al.  Seismic reliability analysis of reinforced concrete structures with stochastic properties , 1996 .

[37]  J. A. Pires,et al.  Stochastic seismic response analysis of soft soil sites , 1996 .

[38]  Nicos Makris,et al.  Nonlinear response of single piles under lateral inertial and seismic loads , 1996 .

[39]  Shirley J. Dyke,et al.  Phenomenological Model of a Magnetorheological Damper , 1996 .

[40]  Alex H. Barbat,et al.  Improved stochastic linearization method using mixed distributions , 1996 .

[41]  James L. Beck,et al.  A transformation method for implementing classical multi-yield-surface theory using the hardening rule of Mroz , 1996 .

[42]  Seongsoo Hong,et al.  End-to-End Design of Distributed Real-Time Systems , 1997 .

[43]  Zhikun Hou,et al.  Modeling and random vibration analysis of SDOF systems with asymmetric hysteresis , 1997 .

[44]  John B. Mander,et al.  Parameter identification for degrading and pinched hysteretic structural concrete systems , 1997 .

[45]  Lucia Faravelli,et al.  Active control and reliability of a structure under wind excitation , 1998 .

[46]  A. Barbat,et al.  Fourier-based maximum entropy method in stochastic dynamics , 1998 .

[47]  Yi-Qing Ni,et al.  IDENTIFICATION OF NON-LINEAR HYSTERETIC ISOLATORS FROM PERIODIC VIBRATION TESTS , 1998 .

[48]  Salvatore Caddemi Parametric nature of the non-linear hardening plastic constitutive equations and their integration , 1998 .

[49]  José Rodellar,et al.  Composite robust active control of seismically excited structures with actuator dynamics , 1998 .

[50]  Lucia Faravelli,et al.  Reliability based stability analysis for actively controlled structures , 1998 .

[51]  Andreas Kugi,et al.  Control of earthquake excited nonlinear structures using Liapunov's theory , 1998 .

[52]  Fabio Carli Nonlinear response of hysteric oscillator under evolutionary excitation , 1999 .

[53]  Yi Guo,et al.  An H∞ almost disturbance decoupling robust controller design for a piezoelectric bimorph actuator with hysteresis , 1999, IEEE Trans. Control. Syst. Technol..

[54]  Shirley J. Dyke,et al.  Application of magnetorheological dampers to seismically excited structures , 1999 .

[55]  Michael C. Constantinou,et al.  Semi-active control systems for seismic protection of structures: a state-of-the-art review , 1999 .

[56]  Andrew W. Smyth,et al.  On-Line Parametric Identification of MDOF Nonlinear Hysteretic Systems , 1999 .

[57]  Shirley J. Dyke,et al.  Semiactive Control Strategies for MR Dampers: Comparative Study , 2000 .

[58]  Louis Jezequel,et al.  Dissipative unimodal structural damping identification , 2000 .

[59]  Alex H. Barbat,et al.  Equivalent linearization of the Bouc-Wen hysteretic model , 2000 .

[60]  Hassan K. Khalil,et al.  Universal integral controllers for minimum-phase nonlinear systems , 2000, IEEE Trans. Autom. Control..

[61]  Manuel de la Sen,et al.  Output feedback sliding mode control of base isolated structures , 2000, J. Frankl. Inst..

[62]  Yi-Kwei Wen,et al.  Evaluation of Pre-Northridge Low-Rise Steel Buildings. II: Reliability , 2000 .

[63]  Andrew N. Vavreck Control of a dynamic vibration absorber with magnetorheological damping , 2000, Symposium on Applied Photonics.

[64]  Yoon Young Kim,et al.  Nonlinear rate-dependent stick-slip phenomena: modeling and parameter estimation , 2001 .

[65]  Seung-Ik Lee,et al.  A hysteresis model for the field-dependent damping force of a magnetorheological damper , 2001 .

[66]  Bruce R. Ellingwood,et al.  Earthquake risk assessment of building structures , 2001, Reliab. Eng. Syst. Saf..

[67]  Zhong-Ping Jiang,et al.  Robust nonlinear integral control , 2001, IEEE Trans. Autom. Control..

[68]  Egor P. Popov,et al.  Seismic Energy Dissipators for RC Panels: Analytical Studies , 2001 .

[69]  Shirley J. Dyke,et al.  Experimental verification of multiinput seismic control strategies for smart dampers , 2001 .

[70]  Robert Bouc,et al.  Drifting response of hysteretic oscillators to stochastic excitation , 2002 .

[71]  W. Zhu,et al.  Random response of integrable Duhem hysteretic systems under non-white excitation , 2002 .

[72]  Anil K. Agrawal,et al.  Semi-active hybrid control systems for nonlinear buildings against near-field earthquakes , 2002 .

[73]  Naser Mostaghel,et al.  Inversion of Ramberg–Osgood equation and description of hysteresis loops , 2002 .

[74]  Billie F. Spencer,et al.  Large-scale MR fluid dampers: modeling and dynamic performance considerations , 2002 .

[75]  Billie F. Spencer,et al.  “Smart” Base Isolation Strategies Employing Magnetorheological Dampers , 2002 .

[76]  G Chen,et al.  MR damper and its application for semi-active control of vehicle suspension system , 2002 .

[77]  Elias B. Kosmatopoulos,et al.  Development of adaptive modeling techniques for non-linear hysteretic systems , 2002 .

[78]  Bin Wu,et al.  Seismic reliability analysis of hysteretic structure with viscoelastic dampers , 2002 .

[79]  Yi-Qing Ni,et al.  STOCHASTIC AVERAGING OF DUHEM HYSTERETIC SYSTEMS , 2002 .

[80]  Ottavia Corbi Shape memory alloys and their application in structural oscillations attenuation , 2003, Simul. Model. Pract. Theory.

[81]  I. Mayergoyz Mathematical models of hysteresis and their applications , 2003 .

[82]  Christopher I. Byrnes,et al.  Limit sets, zero dynamics, and internal models in the problem of nonlinear output regulation , 2003, IEEE Trans. Autom. Control..

[83]  T. T. Soong,et al.  A STOCHASTIC OPTIMAL SEMI-ACTIVE CONTROL STRATEGY FOR ER/MR DAMPERS , 2003 .

[84]  U. Aldemir Optimal control of structures with semiactive-tuned mass dampers , 2003 .

[85]  Fabrizio Vestroni,et al.  Non-isothermal oscillations of pseudoelastic devices , 2003 .

[86]  Pinqi Xia,et al.  An inverse model of MR damper using optimal neural network and system identification , 2003 .

[87]  Y. Orlova,et al.  Nonlinear H ∞-control of nonsmooth time-varying systems with application to friction mechanical manipulators , 2003 .

[88]  Yoshiyuki Suzuki,et al.  Improvement Of Parameter Estimation for Non-Linear Hysteretic Systems With Slip By A Fast Bayesian Bootstrap Filter , 2004 .

[89]  S. Lia,et al.  Identification of hysteretic systems with slip using bootstrap filter , 2004 .

[90]  S. Masri,et al.  Identification of the state equation in complex non-linear systems , 2004 .

[91]  Silvano Erlicher,et al.  Thermodynamic admissibility of Bouc-Wen type hysteresis models , 2004 .

[92]  Nobukatsu Okuizumi,et al.  Multiple time scale analysis of hysteretic systems subjected to harmonic excitation , 2004 .

[93]  Billie F. Spencer,et al.  Dynamic Modeling of Large-Scale Magnetorheological Damper Systems for Civil Engineering Applications , 2004 .

[94]  W. Q. Zhu,et al.  Semi-active control of wind excited building structures using MR/ER dampers , 2004 .

[95]  Yoshiyuki Suzuki,et al.  Identification of non-linear hysteretic systems with slip , 2004 .

[96]  F. Petrone,et al.  Dynamic characterization of elastomers and identification with rheological models , 2004 .

[97]  H. Zhang,et al.  Parameter Analysis of the Differential Model of Hysteresis , 2004 .

[98]  Fabrizio Vestroni,et al.  Nonlinear thermomechanical oscillations of shape-memory devices , 2004 .

[99]  Andrew S. Whittaker,et al.  Performance estimates in seismically isolated bridge structures , 2004 .

[100]  J. Geoffrey Chase,et al.  The impact of total acceleration control for semi-active earthquake hazard mitigation , 2004 .

[101]  J. Guggenberger,et al.  Monte Carlo simulation of the hysteretic response of frame structures using plastification adapted shape functions , 2004 .

[102]  F. Ikhouane,et al.  On the Hysteretic Bouc–Wen Model , 2005 .

[103]  B. J. Vickery,et al.  Design of tuned mass dampers incorporating wire rope springs: Part I: Dynamic representation of wire rope springs , 2005 .

[104]  José Rodellar,et al.  Control of uncertain non-linear systems via adaptive backstepping , 2005 .

[105]  Seung-Bok Choi,et al.  A hydro-mechanical model for hysteretic damping force prediction of ER damper: experimental verification , 2005 .

[106]  Sergio M. Savaresi,et al.  Identification of semi-physical and black-box non-linear models: the case of MR-dampers for vehicles control , 2005, Autom..

[107]  Helmut J. Pradlwarter,et al.  Chair of Engineering Mechanics Ifm-publication 2-382 Nonstationary Response of Large, Non-linear Finite Element Systems under Stochastic Loading , 2022 .

[108]  Antonio Rodríguez-Ferran,et al.  Hysteretic modelling of x-braced shear walls , 2005 .

[109]  Billie F. Spencer,et al.  Frequency Domain Identification of Multi-Input, Multi-Output Systems Considering Physical Relationships between Measured Variables , 2005 .

[110]  José Rodellar,et al.  Adaptive control of a hysteretic structural system , 2005, Autom..

[111]  Jan Awrejcewicz,et al.  Influence of hysteretic dissipation on chaotic responses , 2005 .

[112]  Ming-Hsiang Shih,et al.  A model for hysteretic behavior of rhombic low yield strength steel added damping and stiffness , 2005 .

[113]  Shufang Dong,et al.  Rehabilitation device with variable resistance and intelligent control. , 2005, Medical engineering & physics.

[114]  J. Guggenberger,et al.  Stochastic response of large FEM models with hysteretic behaviour in beam elements , 2005 .

[115]  Rong-Fong Fung,et al.  Hysteresis identification and dynamic responses of the impact drive mechanism , 2005 .

[116]  Rong-Fong Fung,et al.  Optimization of an impact drive mechanism based on real-coded genetic algorithm , 2005 .

[117]  M. F. Golnaraghi,et al.  Analytical and Experimental Study of the Response of a Suspension System with a Magnetorheological Damper , 2005 .

[118]  Régis Dufour,et al.  Equivalent rheological and restoring force models for predicting the harmonic response of elastomer specimens , 2006 .

[119]  Francesc Pozo,et al.  Adaptive Backstepping Control of Hysteretic Base-Isolated Structures , 2006 .

[120]  Armen Der Kiureghian,et al.  Strategies for finding the design point in non-linear finite element reliability analysis , 2006 .

[121]  J. Beck,et al.  Bayesian State and Parameter Estimation of Uncertain Dynamical Systems , 2006 .

[122]  José Rodellar,et al.  Analytical Characterization of Hysteresis Loops Described by the Bouc-Wen Model , 2006 .

[123]  Adrian M. Chandler,et al.  Simplified inverse dynamics models for MR fluid dampers , 2006 .

[124]  José Rodellar,et al.  A linear controller for hysteretic systems , 2006, IEEE Transactions on Automatic Control.

[125]  George Gazetas,et al.  Winkler model for lateral response of rigid caisson foundations in linear soil , 2006 .

[126]  José Rodellar,et al.  Dynamic properties of the hysteretic Bouc-Wen model , 2007, Syst. Control. Lett..

[127]  Oriol Gomis-Bellmunt,et al.  Modeling and validation of a piezoelectric actuator , 2007 .

[128]  Shirley J. Dyke,et al.  Modeling and identification of a shear mode magnetorheological damper , 2007 .

[129]  Oriol Gomis-Bellmunt,et al.  A limit cycle approach for the parametric identification of hysteretic systems , 2008, Syst. Control. Lett..