State of the art on high temperature thermal energy storage for power generation. Part 1—Concepts, materials and modellization

Concentrated solar thermal power generation is becoming a very attractive renewable energy production system among all the different renewable options, as it has have a better potential for dispatchability. This dispatchability is inevitably linked with an efficient and cost-effective thermal storage system. Thus, of all components, thermal storage is a key one. However, it is also one of the less developed. Only a few plants in the world have tested high temperature thermal energy storage systems. In this paper, the different storage concepts are reviewed and classified. All materials considered in literature or plants are listed. And finally, modellization of such systems is reviewed.

[1]  Ashmore Mawire,et al.  Experimental and simulated temperature distribution of an oil-pebble bed thermal energy storage system with a variable heat source , 2009 .

[2]  Rainer Tamme,et al.  PCM-Graphite Composites for High Temperature Thermal Energy Storage , 2006 .

[3]  S. C. Solanki,et al.  Latent heat thermal energy storage using cylindrical capsule: Numerical and experimental investigations , 2006 .

[4]  Ulf Herrmann,et al.  Engineering aspects of a molten salt heat transfer fluid in a trough solar field , 2004 .

[5]  Manuel R. Arahal,et al.  Serial grey-box model of a stratified thermal tank for hierarchical control of a solar plant , 2008 .

[6]  Fredrik Setterwall,et al.  Phase transition temperature ranges and storage density of paraffin wax phase change materials , 2004 .

[7]  H. Watanabe,et al.  Further examination of the transient hot-wire method for the simultaneous measurement of thermal conductivity and thermal diffusivity , 2002 .

[8]  Robert A. Shanks,et al.  Crystallisation, melting, recrystallisation and polymorphism of n-eicosane for application as a phase change material , 2006 .

[9]  S. M. Hasnain Review on sustainable thermal energy storage technologies, Part I: heat storage materials and techniques , 1998 .

[10]  John W. Kelton,et al.  Testing of Thermocline Filler Materials and Molten-Salt Heat Transfer Fluids for Thermal Energy Storage Systems in Parabolic Trough Power Plants , 2004 .

[11]  J. Selman,et al.  Thermal conductivity enhancement of phase change materials using a graphite matrix , 2006 .

[12]  G. Belton,et al.  Thermochemistry of salt hydrates , 1973 .

[13]  R. Tamme,et al.  Solid media thermal storage for parabolic trough power plants , 2006 .

[14]  A. Mawire,et al.  Simulated energy and exergy analyses of the charging of an oil–pebble bed thermal energy storage system for a solar cooker , 2008 .

[15]  Yvon Jarny,et al.  Estimation of thermal conductivity of thermoplastics under moulding conditions: an apparatus and an inverse algorithm , 1997 .

[16]  Keith Lovegrove,et al.  Theoretical analysis and experimental results of a 1 kWchem ammonia synthesis reactor for a solar thermochemical energy storage system , 1999 .

[17]  A. Bejan,et al.  Thermal Energy Storage: Systems and Applications , 2002 .

[18]  Doerte Laing,et al.  Advanced Thermal Energy Storage Technology for Parabolic Trough , 2004 .

[19]  R. Bradshaw,et al.  Corrosion resistance of stainless steels during thermal cycling in alkali nitrate molten salts. , 2001 .

[20]  A. E. Hosary,et al.  Corrosion of Mild Steel in Molten Sodium Nitrate–Potassium Nitrate Eutectic , 1976 .

[21]  Eric Arquis,et al.  Thermal energy storage systems for electricity production using solar energy direct steam generation technology , 2008 .

[22]  Wolf-Dieter Steinmann,et al.  Analysis of steam storage systems using Modelica , 2006 .

[23]  B. Flaherty,et al.  Characterisation of waxes by differential scanning calorimetry , 2007 .

[24]  R. Naumann,et al.  Results of thermal analysis for investigation of salt hydrates as latent heat-storage materials , 1989 .

[25]  D. Kearney,et al.  Assessment of a Molten Salt Heat Transfer Fluid in a Parabolic Trough Solar Field , 2003 .

[26]  Wujun Zhang,et al.  Numerical simulation and parametric study on new type of high temperature latent heat thermal energy storage system , 2008 .

[27]  S. Himran,et al.  Characterization of Alkanes and Paraffin Waxes for Application as Phase Change Energy Storage Medium , 1994 .

[28]  A. Razani,et al.  A two-dimensional numerical investigation of the optimal removal time and entropy production rate for a sensible thermal storage system , 1996 .

[29]  L. Cabeza,et al.  PHASE CHANGE MATERIALS AND THEIR BASIC PROPERTIES , 2007 .

[30]  Luisa F. Cabeza,et al.  Experimental study on phase change materials and plastics compatibility , 2006 .

[31]  Xiugan Yuan,et al.  Energy analysis of space solar dynamic heat receivers , 2003 .

[32]  Xin Wang,et al.  Experimental research on a kind of novel high temperature phase change storage heater , 2006 .

[33]  D. Martínez,et al.  Energía solar termoeléctrica , 2006 .

[34]  W. Glenn Steele,et al.  Performance comparison of high-temperature packed bed operation with PCM and sensible-heat pellets , 1997 .

[35]  Wolfgang F. Hemminger,et al.  Methoden der Thermischen Analyse , 1989 .

[36]  R. Bradshaw,et al.  Corrosion of stainless steels and carbon steel by molten mixtures of commercial nitrate salts , 2004 .

[37]  Keith Lovegrove,et al.  Developing ammonia based thermochemical energy storage for dish power plants , 2003 .

[38]  Zoubir Acem Nouveaux composites graphite/sel destinés au stockage de l'énergie thermique à haute température : De l'élaboration au développement de méthodes de caractérisation thermique de matériaux conducteurs orthotropes. , 2007 .

[39]  B. M. Gibbs,et al.  DSC study of technical grade phase change heat storage materials for solar heating applications , 1995 .

[40]  Luisa F. Cabeza,et al.  State of the art on high-temperature thermal energy storage for power generation. Part 2--Case studies , 2010 .

[41]  A. Mujumdar,et al.  Cyclic heat transfer in a novel storage unit of multiple phase change materials , 1996 .

[42]  Luisa F. Cabeza,et al.  Review on thermal energy storage with phase change: materials, heat transfer analysis and applications , 2003 .

[43]  Jose M. Marin,et al.  Verification of a T-history installation to measure enthalpy versus temperature curves of phase change materials , 2006 .

[44]  Wlodzimierz Blasiak,et al.  Thermal performance analysis on a two composite material honeycomb heat regenerators used for HiTAC burners , 2005 .

[45]  Hiki Hong,et al.  A study of accurate latent heat measurement for a PCM with a low melting temperature using T-history method , 2006 .

[46]  Wolf-Dieter Steinmann,et al.  Innovative Thermal Energy Storage Technology for Parabolic Trough Concentrating Solar Power Plants , 2002 .

[47]  Wattanapong Rakwichian,et al.  Heat transfer of high thermal energy storage with heat exchanger for solar trough power plant , 2008 .

[48]  G. Lane,et al.  Low temperature heat storage with phase change materials , 1980 .

[49]  R. Pitz-Paal,et al.  Cascaded latent heat storage for parabolic trough solar power plants , 2007 .

[50]  Zhang Yinping,et al.  A simple method, the -history method, of determining the heat of fusion, specific heat and thermal conductivity of phase-change materials , 1999 .

[51]  Ulf Herrmann,et al.  Two-tank molten salt storage for parabolic trough solar power plants , 2004 .

[52]  B. Yimer,et al.  Parametric study of phase change thermal energy storage systems for space application , 1997 .

[53]  A. S. Mujumdar,et al.  A New Solar Receiver Thermal Store for Space-Based Activities Using Multiple Composite Phase-Change Materials , 1995 .

[54]  John Rekstad,et al.  Supercooling salt hydrates: Stored enthalpy as a function of temperature , 2006 .

[55]  Keith Lovegrove,et al.  The first ammonia based solar thermochemical energy storage demonstration , 1999 .

[56]  Hajime Nakamura,et al.  Optimum Efficiencies and Phase Change Temperatures in Latent Heat Storage Systems , 1994 .

[57]  Keith Lovegrove,et al.  TECHNO-ECONOMIC ANALYSIS OF A 10 MWe SOLAR THERMAL POWER PLANT USING AMMONIA-BASED THERMOCHEMICAL ENERGY STORAGE , 1999 .

[58]  Doerte Laing,et al.  Thermal Energy Storage Technology for Industrial Process Heat Applications , 2005 .

[59]  E. Hahne,et al.  Thermal expansion models for polycrystalline salt-ceramics , 1997 .

[60]  Krzysztof Pielichowski,et al.  Thermal properties of poly(ethylene oxide)/lauric acid blends : A SSA-DSC study , 2006 .

[61]  Beat Lehmann,et al.  Development of a thermally activated ceiling panel with PCM for application in lightweight and retrofitted buildings , 2004 .

[62]  J. Pacheco,et al.  DEVELOPMENT OF A MOLTEN-SALT THERMOCLINE THERMAL STORAGE SYSTEM FOR PARABOLIC TROUGH PLANTS , 2001 .

[63]  J. M. Chavez,et al.  Corrosion of stainless and carbon steels in molten mixtures of industrial nitrates , 1994 .

[64]  F. Pochetti,et al.  Characterization of petroleum products by DSC analysis , 1973 .

[65]  Dhanesh Chandra,et al.  Thermodynamic assessment of binary solid-state thermal storage materials☆ , 2005 .

[66]  Qiao He,et al.  A study on latent heat storage exchangers with the high‐temperature phase‐change material , 2001 .

[67]  Martin Dr. Forster,et al.  Theoretical investigation of the system SnOx/Sn for the thermochemical storage of solar energy , 2004 .

[68]  David R. Mills,et al.  Screening of high melting point phase change materials (PCM) in solar thermal concentrating technology based on CLFR , 2005 .

[69]  H. Cui,et al.  Thermal performance analysis for a heat receiver using multiple phase change materials , 2003 .

[70]  Y. H. Jeong Modern calorimetry: going beyond tradition , 2001 .

[71]  R. Tamme,et al.  Thermal Conductivity of High-Temperature Multicomponent Materials with Phase Change , 2008 .

[72]  Masayoshi Yabe,et al.  A Study of Trimethylolethane Hydrate as a Phase Change Material , 2003 .

[73]  I. B. Singh,et al.  Influence of temperature and sulphate ion on corrosion of mild steel in molten NaNo3 , 1992 .

[74]  Keith Lovegrove,et al.  Exergy analysis of an ammonia synthesis reactor in a solar thermochemical power system , 2002 .

[75]  L. Cabeza,et al.  Determination of enthalpy?temperature curves of phase change materials with the temperature-history method: improvement to temperature dependent properties , 2003 .

[76]  Robert Palumbo,et al.  DESIGN ASPECTS OF SOLAR THERMOCHEMICAL ENGINEERING—A CASE STUDY: TWO-STEP WATER-SPLITTING CYCLE USING THE Fe3O4/FeO REDOX SYSTEM , 1999 .

[77]  Xin Wang,et al.  Influence of additives on thermal conductivity of shape-stabilized phase change material , 2006 .

[78]  Keith Lovegrove,et al.  Thermodynamic limits on the performance of a solar thermochemical energy storage system , 1993 .

[79]  Doerte Laing,et al.  Solid Media Thermal Storage Development and Analysis of Modular Storage Operation Concepts for Parabolic Trough Power Plants , 2008 .

[80]  A. Sari,et al.  Thermal conductivity and latent heat thermal energy storage characteristics of paraffin/expanded graphite composite as phase change material , 2007 .

[81]  H. W. Fricker Regenerative thermal storage in atmospheric air system solar power plants , 2004 .

[82]  Ahmed Elgafy,et al.  Graphite foams infiltrated with phase change materials as alternative materials for space and terrestrial thermal energy storage applications , 2008 .

[83]  Arun S. Mujumdar,et al.  Melting of a phase change material in concentric horizontal annuli of arbitrary cross-section , 2000 .

[84]  Dhanesh Chandra,et al.  Heat capacity measurement of organic thermal energy storage materials , 2006 .

[85]  J. Smeenk,et al.  Indirectly heated biomass gasification using a latent heat ballast — 1: experimental evaluations , 2001 .

[86]  Keith Lovegrove,et al.  A Solar-Driven Ammonia-Based Thermochemical Energy Storage System , 1999 .

[87]  S. Medved,et al.  Influence of accuracy of thermal property data of a phase change material on the result of a numerical model of a packed bed latent heat storage with spheres , 2005 .

[88]  H. Paksoy,et al.  Thermal Energy Storage for Sustainable Energy Consumption , 2007 .

[89]  Mary Jane Hale,et al.  Advanced Thermal Storage Fluids for Solar Parabolic Trough Systems , 2002 .

[90]  U. Herrmann,et al.  Evaluation of a Molten Salt Heat Transfer Fluid in a Parabolic Trough Solar Field , 2002 .

[91]  Jun-ichiro Yagi,et al.  Storage of thermal energy for effective use of waste heat from industries , 1995 .

[92]  Ashmore Mawire,et al.  A feedforward IMC structure for controlling the charging temperature of a TES system of a solar cooker , 2008 .

[93]  Robert C. Brown,et al.  Indirectly heated biomass gasification using a latent-heat ballast—part 3: refinement of the heat transfer model , 2005 .

[94]  Xiugan Yuan,et al.  Numerical simulation and experiment investigation on unit heat exchange tube for solar heat receiver , 2008 .

[95]  Atsushi Tsutsumi,et al.  Solar UT-3 thermochemical cycle for hydrogen production , 1996 .

[96]  Motoi Yamaha,et al.  The Evaluation of Peak Shaving by a Thermal Storage System Using Phase-Change Materials in Air Distribution Systems , 2006 .

[97]  D. Blake,et al.  Advanced Heat Transfer and Thermal Storage Fluids , 2005 .