CHANGES OF DUST OPACITY WITH DENSITY IN THE ORION A MOLECULAR CLOUD

We have studied the opacity of dust grains at submillimeter wavelengths by estimating the optical depth from imaging at 160, 250, 350, and 500 μm from the Herschel Gould Belt Survey and comparing this to a column density obtained from the Two Micron All Sky Survey derived color excess E(J − Ks). Our main goal was to investigate the spatial variations of the opacity due to “big” grains over a variety of environmental conditions and thereby quantify how emission properties of the dust change with column (and volume) density. The central and southern areas of the Orion A molecular cloud examined here, with NH ranging from 1.5 × 1021 cm−2 to 50 × 1021 cm−2, are well suited to this approach. We fit the multi-frequency Herschel spectral energy distributions (SEDs) of each pixel with a modified blackbody to obtain the temperature, T, and optical depth, τ1200, at a fiducial frequency of 1200 GHz (250 μm). Using a calibration of NH/E(J − Ks) for the interstellar medium (ISM) we obtained the opacity (dust emission cross-section per H nucleon), σe(1200), for every pixel. From a value ∼1 × 10−25 cm2 H−1 at the lowest column densities that is typical of the high-latitude diffuse ISM, σe(1200) increases as N0.28H over the range studied. This is suggestive of grain evolution. Integrating the SEDs over frequency, we also calculated the specific power P (emission power per H) for the big grains. In low column density regions where dust clouds are optically thin to the interstellar radiation field (ISRF), P is typically 3.7 × 10−31 W H−1, again close to that in the high-latitude diffuse ISM. However, we find evidence for a decrease of P in high column density regions, which would be a natural outcome of attenuation of the ISRF that heats the grains, and for localized increases for dust illuminated by nearby stars or embedded protostars.

[1]  Jonathan P. Williams,et al.  HERSCHEL REVEALS MASSIVE COLD CLUMPS IN NGC 7538 , 2013, 1307.0022.

[2]  Peter G. Martin,et al.  Estimating distance, pressure, and dust opacity using submillimeter observations of self-gravitating filaments , 2012, 1209.4111.

[3]  M. Sauvage,et al.  The spine of the swan: a Herschel study of the DR21 ridge and filaments in Cygnus X , 2012, 1206.1243.

[4]  J. Fischera,et al.  Physical properties of interstellar filaments , 2012, 1204.3608.

[5]  Heidelberg,et al.  Cluster-formation in the Rosette molecular cloud at the junctions of filaments , 2012, Astronomy & Astrophysics.

[6]  N. Peretto,et al.  The Pipe Nebula as seen with Herschel: formation of filamentary structures by large-scale compression? , 2012, 1203.3403.

[7]  M. Juvela,et al.  Modelling the dust emission from dense interstellar clouds: disentangling the effects of radiative transfer and dust properties , 2012, 1202.5966.

[8]  M. Halpern,et al.  EVIDENCE FOR ENVIRONMENTAL CHANGES IN THE SUBMILLIMETER DUST OPACITY , 2011, 1112.5433.

[9]  Annie Zavagno,et al.  Filaments and ridges in Vela C revealed by Herschel: from low-mass to high-mass star-forming sites , 2011, 1108.0941.

[10]  M. Lombardi,et al.  2MASS wide field extinction maps - IV. The Orion, Monoceros R2, Rosette, and Canis Major star forming regions , 2011, 1107.5096.

[11]  C. Dominik,et al.  UvA-DARE ( Digital Academic Repository ) Dust coagulation and fragmentation in molecular clouds : II . The opacity of the dust aggregate size distribution , 2011 .

[12]  J. Fischera On the spectral energy distributions of passively heated condensed cores , 2011 .

[13]  K. Dobashi Atlas and Catalog of Dark Clouds Based on the 2 Micron All Sky Survey , 2011 .

[14]  P. McGehee,et al.  Galactic cold cores: II. Herschel study of the extended dust emission around the first: Planck detections , 2011, 1101.3003.

[15]  J. Rho,et al.  Variation of the extinction law in the Trifid nebula , 2011, 1101.1089.

[16]  J. L. Bourlot,et al.  The global dust SED: tracing the nature and evolution of dust with DustEM , 2010, 1010.2769.

[17]  R. Klessen,et al.  The link between molecular cloud structure and turbulence , 2010, 1001.2453.

[18]  N. Evans,et al.  OBSERVATIONAL CONSTRAINTS ON SUBMILLIMETER DUST OPACITY , 2010, 1012.3488.

[19]  M. Sauvage,et al.  Initial highlights of the HOBYS key program , the Herschel imaging survey of OB young stellar objects Journal Item , 2018 .

[20]  Peter G. Martin,et al.  Dust temperature tracing the ISRF intensity in the Galaxy , 2010 .

[21]  S. Ott,et al.  Herschel Space Observatory - An ESA facility for far-infrared and submillimetre astronomy , 2010, 1005.5331.

[22]  S. J. Liu,et al.  Herschel : the first science highlights Special feature L etter to the E ditor The Herschel-SPIRE instrument and its in-flight performance , 2010 .

[23]  M. Sauvage,et al.  Filamentary structures and compact objects in the Aquila and Polaris clouds observed by Herschel , 2010, 1005.3115.

[24]  L. Calzoletti,et al.  Herschel : the first science highlights Special feature L etter to the E ditor Direct estimate of cirrus noise in Herschel Hi-GAL images , 2010 .

[25]  H. Roussel,et al.  From filamentary clouds to prestellar cores to the stellar IMF: Initial highlights from the Herschel Gould Belt survey , 2010, 1005.2618.

[26]  M. Sauvage,et al.  Hi-GAL: The Herschel Infrared Galactic Plane Survey , 2010, 1001.2106.

[27]  M. Halpern,et al.  BLAST05: POWER SPECTRA OF BRIGHT GALACTIC CIRRUS AT SUBMILLIMETER WAVELENGTHS , 2009, 0910.1095.

[28]  L. Mundy,et al.  DEEP JHKs AND SPITZER IMAGING OF FOUR ISOLATED MOLECULAR CLOUD CORES , 2009, 0905.0655.

[29]  J. Rowles,et al.  The structure of molecular clouds – I. All-sky near-infrared extinction maps , 2009, 0902.3403.

[30]  M. Halpern,et al.  The Balloon-borne Large Aperture Submillimeter Telescope (BLAST) 2005: A 4 deg2 Galactic Plane Survey in Vulpecula (ℓ = 59°) , 2007, 0711.3461.

[31]  Thomas Henning,et al.  The Photodetector Array Camera and Spectrometer (PACS) for the Herschel Space Observatory , 2004, Astronomical Telescopes + Instrumentation.

[32]  G. Lagache,et al.  IRIS: A New Generation of IRAS Maps , 2004, astro-ph/0412216.

[33]  Wm. A. Wheaton,et al.  Spectral Irradiance Calibration in the Infrared. XIV. The Absolute Calibration of 2MASS , 2003, astro-ph/0304350.

[34]  P. Martin,et al.  The Size Distribution of Interstellar Dust Particles as Determined from Extinction , 1993 .

[35]  G. J. Babu,et al.  Linear regression in astronomy. II , 1990 .