Phase variance optical coherence microscopy for label-free imaging of the developing vasculature in zebrafish embryos

Abstract. A phase variance optical coherence microscope (pvOCM) has been created to image blood flow in the microvasculature of zebrafish embryos, without the use of exogenous labels. The pvOCM imaging system has axial and lateral resolutions of 2.8  μm in tissue and imaging depth of more than 100  μm. Images of 2 to 5 days postfertilization zebrafish embryos identified the detailed anatomical structure based on OCM intensity contrast. Phase variance contrast offered visualization of blood flow in the arteries, veins, and capillaries. The pvOCM images of the vasculature were confirmed by direct comparisons with fluorescence microscopy images of transgenic embryos in which the vascular endothelium is labeled with green fluorescent protein. The ability of pvOCM to capture activities of regional blood flow permits it to reveal functional information that is of great utility for the study of vascular development.

[1]  Ruikang K. Wang,et al.  Ultrahigh sensitive optical microangiography for in vivo imaging of microcirculations within human skin tissue beds. , 2010, Optics express.

[2]  Ruikang K. Wang,et al.  Depth-resolved imaging of capillary networks in retina and choroid using ultrahigh sensitive optical microangiography. , 2010, Optics letters.

[3]  Ayyakkannu Manivannan,et al.  Ultra-wide-field fluorescein angiography of the ocular fundus. , 2005, American journal of ophthalmology.

[4]  Tae Joong Eom,et al.  Calibration and characterization protocol for spectral-domain optical coherence tomography using fiber Bragg gratings. , 2011, Journal of biomedical optics.

[5]  Y. Yasuno,et al.  Full-range, high-speed, high-resolution 1 microm spectral-domain optical coherence tomography using BM-scan for volumetric imaging of the human posterior eye. , 2008, Optics express.

[6]  Simon S. Gao,et al.  Automated choroidal neovascularization detection algorithm for optical coherence tomography angiography. , 2015, Biomedical optics express.

[7]  D. Kleinfeld,et al.  Two-Photon Imaging of Cortical Surface Microvessels Reveals a Robust Redistribution in Blood Flow after Vascular Occlusion , 2006, PLoS biology.

[8]  W Drexler,et al.  Ultrahigh resolution Fourier domain optical coherence tomography. , 2004, Optics express.

[9]  Robert J Zawadzki,et al.  Phase-variance optical coherence tomography: a technique for noninvasive angiography. , 2014, Ophthalmology.

[10]  Ruikang K. Wang,et al.  Scalable wide-field optical coherence tomography-based angiography for in vivo imaging applications , 2016, Biomedical optics express.

[11]  Yih Miin Liew,et al.  In vivo assessment of human burn scars through automated quantification of vascularity using optical coherence tomography , 2012, Journal of biomedical optics.

[12]  Raoul Kopelman,et al.  Vascular Targeted Nanoparticles for Imaging and Treatment of Brain Tumors , 2006, Clinical Cancer Research.

[13]  S. Yun,et al.  In vivo high-resolution video-rate spectral-domain optical coherence tomography of the human retina and optic nerve. , 2004, Optics express.

[14]  L. Yannuzzi,et al.  Indocyanine green angiography: a perspective on use in the clinical setting. , 2011, American journal of ophthalmology.

[15]  Ruikang K. Wang,et al.  Doppler optical micro-angiography for volumetric imaging of vascular perfusion in vivo. , 2009, Optics express.

[16]  Daniel M. Schwartz,et al.  Optical imaging of the chorioretinal vasculature in the living human eye , 2013, Proceedings of the National Academy of Sciences.

[17]  S. Charpak,et al.  Two-photon imaging of capillary blood flow in olfactory bulb glomeruli. , 2009, Methods in molecular biology.

[18]  Barry Cense,et al.  In vivo dynamic human retinal blood flow imaging using ultra-high-speed spectral domain optical coherence tomography. , 2003, Optics express.

[19]  Guillermo Oliver,et al.  Lymphatic vasculature development , 2004, Nature Reviews Immunology.

[20]  Teresa C. Chen,et al.  In vivo dynamic human retinal blood flow imaging using ultra-high-speed spectral domain optical Doppler tomography , 2003 .

[21]  B. Weinstein,et al.  The vascular anatomy of the developing zebrafish: an atlas of embryonic and early larval development. , 2001, Developmental biology.

[22]  D. Stainier,et al.  Cellular and molecular analyses of vascular tube and lumen formation in zebrafish , 2005, Development.

[23]  A. Gore,et al.  Vascular development in the zebrafish. , 2012, Cold Spring Harbor perspectives in medicine.

[24]  David Huang,et al.  Projection-resolved optical coherence tomographic angiography. , 2016, Biomedical optics express.

[25]  Benjamin J Vakoc,et al.  Three-dimensional microscopy of the tumor microenvironment in vivo using optical frequency domain imaging , 2009, Nature Medicine.

[26]  Adrian Mariampillai,et al.  Speckle variance detection of microvasculature using swept-source optical coherence tomography. , 2008, Optics letters.

[27]  D. Chauhan,et al.  Comparison between optical coherence tomography and fundus fluorescein angiography for the detection of cystoid macular edema in patients with uveitis. , 2000, Ophthalmology.

[28]  Le A. Trinh,et al.  Label-free imaging of developing vasculature in zebrafish with phase variance optical coherence microscopy , 2016, SPIE BiOS.

[29]  Ahhyun S Nam,et al.  Complex differential variance algorithm for optical coherence tomography angiography. , 2014, Biomedical optics express.

[30]  Changhuei Yang,et al.  Mobility and transverse flow visualization using phase variance contrast with spectral domain optical coherence tomography. , 2007, Optics express.

[31]  Didier Y. R. Stainier,et al.  Zebrafish genetics and vertebrate heart formation , 2001, Nature Reviews Genetics.

[32]  M. Leahy,et al.  Correlation mapping method for generating microcirculation morphology from optical coherence tomography (OCT) intensity images , 2010, Journal of biophotonics.

[33]  Mohammad Sultan Mahmud,et al.  Review of speckle and phase variance optical coherence tomography to visualize microvascular networks , 2013, Journal of biomedical optics.

[34]  B. Weinstein,et al.  In vivo imaging of embryonic vascular development using transgenic zebrafish. , 2002, Developmental biology.

[35]  J. Duker,et al.  Ultrahigh-resolution, high-speed, Fourier domain optical coherence tomography and methods for dispersion compensation. , 2004, Optics express.

[36]  Ruikang K. Wang,et al.  Methods and algorithms for optical coherence tomography-based angiography: a review and comparison , 2015, Journal of biomedical optics.

[37]  Jeff Fingler,et al.  Phase-contrast OCT imaging of transverse flows in the mouse retina and choroid. , 2008, Investigative ophthalmology & visual science.

[38]  Martin Leahy,et al.  In vivo imaging of the microcirculation of the volar forearm using correlation mapping optical coherence tomography (cmOCT) , 2011, Biomedical optics express.

[39]  Daniel M. Schwartz,et al.  In vivo volumetric imaging of human retinal circulation with phase-variance optical coherence tomography , 2011, Biomedical optics express.

[40]  T. Gardner,et al.  Diabetic retinopathy: more than meets the eye. , 2002, Survey of ophthalmology.

[41]  Kari Alitalo Lymphangiogenesis in development and human disease , 2007 .

[42]  J. Rao,et al.  Fluorescence imaging in vivo: recent advances. , 2007, Current opinion in biotechnology.

[43]  R. Leitgeb,et al.  Extended focus depth for Fourier domain optical coherence microscopy. , 2006, Optics letters.

[44]  Andries Zijlstra,et al.  Viral nanoparticles as tools for intravital vascular imaging , 2006, Nature Medicine.

[45]  Qiulian Wu,et al.  Stem cell-like glioma cells promote tumor angiogenesis through vascular endothelial growth factor. , 2006, Cancer research.

[46]  Hsiang-Chieh Lee,et al.  Ultrahigh speed spectral-domain optical coherence microscopy. , 2013, Biomedical optics express.

[47]  Robert J Zawadzki,et al.  Volumetric microvascular imaging of human retina using optical coherence tomography with a novel motion contrast technique. , 2009, Optics express.

[48]  Jim Haseloff,et al.  High-resolution live imaging of plant growth in near physiological bright conditions using light sheet fluorescence microscopy. , 2011, The Plant journal : for cell and molecular biology.