A new particle swarm optimization algorithm for dynamic image clustering

In this paper, we present ACPSO a new dynamic image clustering algorithm based on particle swarm optimization. ACPSO can partition image into compact and well separated clusters without any knowledge on the real number of clusters. It uses a swarm of particles with variable number of length, which evolve dynamically using mutation operators. Experimental results on real images demonstrate that the proposed algorithm is able to extract the correct number of clusters with denser and more compactness clusters. The results demonstrate that ACPSO outperforms other optimization algorithms.

[1]  G H Ball,et al.  A clustering technique for summarizing multivariate data. , 1967, Behavioral science.

[2]  Ajith Abraham,et al.  Swarm Intelligence Algorithms for Data Clustering , 2008, Soft Computing for Knowledge Discovery and Data Mining.

[3]  Andries P. Engelbrecht,et al.  Dynamic Clustering using Particle Swarm Optimization with Application in Unsupervised Image Classification , 2007 .

[4]  Swagatam Das,et al.  Automatic Clustering Using an Improved Differential Evolution Algorithm , 2007 .

[5]  Yue Shi,et al.  A modified particle swarm optimizer , 1998, 1998 IEEE International Conference on Evolutionary Computation Proceedings. IEEE World Congress on Computational Intelligence (Cat. No.98TH8360).

[6]  Andries Petrus Engelbrecht,et al.  Dynamic clustering using particle swarm optimization with application in image segmentation , 2006, Pattern Analysis and Applications.

[7]  Monga,et al.  1 - Segmentation d'images: vers une méthodologie , 1987 .

[8]  Gillian Dobbie,et al.  An Evolutionary Particle Swarm Optimization algorithm for data clustering , 2008, 2008 IEEE Swarm Intelligence Symposium.

[9]  Ujjwal Maulik,et al.  Genetic clustering for automatic evolution of clusters and application to image classification , 2002, Pattern Recognit..

[10]  James Kennedy,et al.  Particle swarm optimization , 2002, Proceedings of ICNN'95 - International Conference on Neural Networks.

[11]  P. V. G. D. Prasad Reddy,et al.  Hybridized Improved Genetic Algorithm with Variable Length Chromosome for Image Clustering , 2007 .

[12]  M.-C. Su,et al.  A new cluster validity measure and its application to image compression , 2004, Pattern Analysis and Applications.

[13]  Andries Petrus Engelbrecht,et al.  Data clustering using particle swarm optimization , 2003, The 2003 Congress on Evolutionary Computation, 2003. CEC '03..

[14]  Anil K. Jain,et al.  Data clustering: a review , 1999, CSUR.