A density-functional theory study of frequency-dependent polarizabilities and Van der Waals dispersion coefficients for polyatomic molecules

A method for calculating frequency‐dependent polarizabilities and Van der Waals dispersion coefficients, which scales favorably with the number of electrons, has been implemented in the Amsterdam Density Functional package. Time‐dependent Density Functional Theory is used within the Adiabatic Local Density Approximation (ALDA). Contrary to earlier studies with this approximation, our implementation applies to arbitrary closed‐shell molecular systems. Our results for the isotropic part of the Van der Waals dispersion energy are of comparable quality as those obtained in TDCHF calculations. The ALDA results for the relative anisotropy of the dipole dispersion energy compare favorably to TDCHF and MBPT results. Two semi‐empirical ways to calculate the dispersion energy anisotropy are evaluated. Large bases which include diffuse functions are necessary for a good description of the frequency‐dependent properties considered here.

[1]  Ashok Kumar,et al.  RELIABLE ISOTROPIC AND ANISOTROPIC DIPOLE PROPERTIES, AND DIPOLAR DISPERSION ENERGY COEFFICIENTS, FOR CO EVALUATED USING CONSTRAINED DIPOLE OSCILLATOR STRENGTH TECHNIQUES , 1994 .

[2]  W. J. Meath,et al.  Dipole oscillator strength distributions, sums, and dispersion energy coefficients for CO and CO2☆ , 1982 .

[3]  A. Zunger,et al.  Self-interaction correction to density-functional approximations for many-electron systems , 1981 .

[4]  Alan K. Burnham,et al.  Measurement of the dispersion in polarizability anisotropies , 1975 .

[5]  P. Wormer,et al.  Time‐dependent coupled Hartree–Fock calculations of multipole polarizabilities and dispersion interactions in van der Waals dimers consisting of He, H2, Ne, and N2 , 1983 .

[6]  M. E. Casida,et al.  Comparison of local‐density and Hartree–Fock calculations of molecular polarizabilities and hyperpolarizabilities , 1993 .

[7]  G. te Velde,et al.  Three‐dimensional numerical integration for electronic structure calculations , 1988 .

[8]  P. Wormer,et al.  Correlated van der Waals coefficients for dimers consisting of He, Ne, H2, and N2 , 1988 .

[9]  Ashok Kumar,et al.  Reliable isotropic and anisotropic dipolar dispersion energies, evaluated using constrained dipole oscillator strength techniques, with application to interactions involving H2, N2, and the rare gases , 1990 .

[10]  T. Thirunamachandran,et al.  Molecular Quantum Electrodynamics , 1984 .

[11]  Malcolm J. Stott,et al.  Linear-response theory within the density-functional formalism: Application to atomic polarizabilities , 1980 .

[12]  H. Casimir,et al.  The Influence of Retardation on the London-van der Waals Forces , 1948 .

[13]  W. Kohn,et al.  Time-dependent density functional theory , 1990 .

[14]  A. Zangwill Density functional theory of nonlinear optical response , 1983 .

[15]  N. Handy,et al.  The determination of hyperpolarisabilities using density functional theory , 1993 .

[16]  P. Pulay Convergence acceleration of iterative sequences. the case of scf iteration , 1980 .

[17]  José M. Pérez-Jordá,et al.  A density-functional study of van der Waals forces: rare gas diatomics. , 1995 .

[18]  P. W. Langhoff,et al.  Comparisons of Dispersion Force Bounding Methods with Applications to Anisotropic Interactions , 1971 .

[19]  Gerald D. Mahan,et al.  Local density theory of polarizability , 1990 .

[20]  P. Wormer,et al.  Ab initio dispersion coefficients for interactions involving rare-gas atoms , 1992 .

[21]  E. Gross,et al.  Density-Functional Theory for Time-Dependent Systems , 1984 .

[22]  P. J. Leonard Refractive indices, Verdet constants, and Polarizabilities of the inert gases , 1974 .

[23]  Ashok Kumar,et al.  Pseudo-spectral dipole oscillator strengths and dipole-dipole and triple-dipole dispersion energy coefficients for HF, HCl, HBr, He, Ne, Ar, Kr and Xe , 1985 .

[24]  D. Dixon,et al.  Density Functional Study of the Structures and Nonlinear Optical Properties of Urea , 1994 .

[25]  P. Hohenberg,et al.  Inhomogeneous Electron Gas , 1964 .

[26]  Evert Jan Baerends,et al.  Self-consistent molecular Hartree—Fock—Slater calculations I. The computational procedure , 1973 .

[27]  L. E. Sutton,et al.  Tables of interatomic distances and configuration in molecules and ions , 1958 .

[28]  D. Dixon,et al.  Density functional theory predictions of polarizabilities and first- and second-order hyperpolarizabilities for molecular systems , 1994 .

[29]  P. Wormer,et al.  Correlated van der Waals coefficients. II. Dimers consisting of CO, HF, H2O, and NH3 , 1989 .

[30]  P. Wormer,et al.  Intramolecular bond length dependence of the anisotropic dispersion coefficients for interactions of rare gas atoms with N2, CO, Cl2, HCl and HBr , 1993 .

[31]  W. J. Meath,et al.  Pseudo-spectral dipole oscillator strength distributions for the normal alkanes through octane and the evaluation of some related dipole-dipole and triple-dipole dispersion interaction energy coefficients , 1980 .

[32]  William J. Meath,et al.  Dispersion energy constants C 6(A, B), dipole oscillator strength sums and refractivities for Li, N, O, H2, N2, O2, NH3, H2O, NO and N2O , 1977 .

[33]  B. Deb,et al.  Dynamic polarizability of many-electron systems within a time-dependent density-functional theory , 1982 .

[34]  Peter Pulay,et al.  CAN (SEMI) LOCAL DENSITY FUNCTIONAL THEORY ACCOUNT FOR THE LONDON DISPERSION FORCES , 1994 .

[35]  Evert Jan Baerends,et al.  Numerical integration for polyatomic systems , 1992 .

[36]  P. Pulay Improved SCF convergence acceleration , 1982 .

[37]  L. Bartolotti Variation‐perturbation theory within a time‐dependent Kohn–Sham formalism: An application to the determination of multipole polarizabilities, spectral sums, and dispersion coefficients , 1984 .

[38]  Kohn,et al.  Local density-functional theory of frequency-dependent linear response. , 1985, Physical review letters.

[39]  Evert Jan Baerends,et al.  Roothaan-Hartree-Fock-Slater atomic wave functions , 1981 .

[40]  Finite-field calculations of molecular polarizabilities using field-induced polarization functions: second- and third-order perturbation correlation corrections to the coupled Hartree-Fock polarizability of H2O , 1979 .

[41]  N. Bridge,et al.  The polarization of laser light scattered by gases , 1964, Proceedings of the Royal Society of London. Series A, Mathematical and physical sciences.

[42]  S. H. Vosko,et al.  Accurate spin-dependent electron liquid correlation energies for local spin density calculations: a critical analysis , 1980 .

[43]  Andrew Zangwill,et al.  Density-functional approach to local-field effects in finite systems: Photoabsorption in the rare gases , 1980 .

[44]  U. Hohm Dispersion of polarizability anisotropy of H2, O2, N2O, CO2, NH3, C2H6, and cyclo-C3H6 and evaluation of isotropic and anisotropic dispersion-interaction energy coefficients , 1994 .

[45]  D. M. Bishop,et al.  Dipole, quadrupole, octupole and dipole-octupole polarizabilities at real and imaginary frequencies for H, He, and H2 and the dispersion-energy coefficients for interactions between them , 1993 .

[46]  Senatore,et al.  Nonlinear response of closed-shell atoms in the density-functional formalism. , 1987, Physical review. A, General physics.

[47]  Aaron M. Lee,et al.  The determination of hyperpolarizabilities using density functional theory with nonlocal functionals , 1994 .

[48]  P. Wormer,et al.  Many‐body perturbation theory of frequency‐dependent polarizabilities and van der Waals coefficients: Application to H2O–H2O and Ar–NH3 , 1992 .

[49]  B. Alder,et al.  THE GROUND STATE OF THE ELECTRON GAS BY A STOCHASTIC METHOD , 2010 .

[50]  B. Lundqvist,et al.  Exchange and correlation in atoms, molecules, and solids by the spin-density-functional formalism , 1976 .

[51]  W. Kohn,et al.  Self-Consistent Equations Including Exchange and Correlation Effects , 1965 .

[52]  Sean A. C. McDowell,et al.  Molecular polarisabilities - a comparison of density functional theory with standard ab initio methods , 1995 .