Surrogate‐based superstructure optimization framework

In principle, optimization-based “superstructure” methods for process synthesis can be more powerful than sequential-conceptual methods as they account for all complex interactions between design decisions. However, these methods have not been widely adopted because they lead to mixed-integer nonlinear programs that are hard to solve, especially when realistic unit operation models are used. To address this challenge, we develop a superstructure-based strategy where complex unit models are replaced with surrogate models built from data generated via commercial process simulators. In developing this strategy, we study aspects such as the systematic design of process unit surrogate models, the generation of simulation data, the selection of the surrogate's structure, and the required model fitting. We also present how these models can be reformulated and incorporated into mathematical programming superstructure formulations. Finally, we discuss the application of the proposed strategy to a number of applications. © 2010 American Institute of Chemical Engineers AIChE J, 2011

[1]  Ignacio E. Grossmann,et al.  Integration of hierarchical decomposition and mathematical programming for the synthesis of process flowsheets , 1998 .

[2]  Ignacio E. Grossmann,et al.  Mixed-integer programming approach for the synthesis of integrated process flowsheets , 1985 .

[3]  Y. A. Liu,et al.  Heuristic Synthesis and Shortcut Design of Separation Processes Using Residue Curve Maps: A Review , 1994 .

[4]  Ignacio E. Grossmann,et al.  A structural optimization approach in process synthesis. II: Heat recovery networks , 1983 .

[5]  Lorenz T. Biegler,et al.  A superstructure based approach to chemical reactor network synthesis , 1990 .

[6]  Peter Fritzson,et al.  Automated Static Analysis of Equation-Based Components , 2004, Simul..

[7]  Miguel J. Bagajewicz,et al.  New rigorous one-step MILP formulation for heat exchanger network synthesis , 2005, Comput. Chem. Eng..

[8]  Wen Zhou,et al.  Pollution prevention through reactor network synthesis: the IDEAS approach , 2007 .

[9]  L. T. Fan,et al.  Graph-theoretic approach to process synthesis: Polynomial algorithm for maximal structure generation , 1993 .

[10]  Nathan P. Siegel,et al.  Solar Thermochemical Water-Splitting Ferrite-Cycle Heat Engines , 2008 .

[11]  B Linnhoff,et al.  PINCH ANALYSIS- A STATE OF THE RRT REVIEW , 1993 .

[12]  Ignacio E. Grossmann,et al.  A decomposition method for synthesizing complex column configurations using tray-by-tray GDP models , 2004, Comput. Chem. Eng..

[13]  Kaj-Mikael Björk,et al.  Some convexifications in global optimization of problems containing signomial terms , 2003, Comput. Chem. Eng..

[14]  Lorenz T. Biegler,et al.  MPEC problem formulations and solution strategies with chemical engineering applications , 2008, Comput. Chem. Eng..

[15]  T. Westerlund,et al.  Convexification of different classes of non-convex MINLP problems , 1999 .

[16]  Vasilios Manousiouthakis,et al.  IDEAS Approach to Process Network Synthesis: Minimum Plate Area for Complex Distillation Networks with Fixed Utility Cost† , 2002 .

[17]  E. Balas Disjunctive programming and a hierarchy of relaxations for discrete optimization problems , 1985 .

[18]  Ignacio E. Grossmann,et al.  Symbolic integration of logic in mixed-integer linear programming techniques for process synthesis , 1993 .

[19]  L. T. Fan,et al.  Algorithmic synthesis of an optimal separation network comprising separators of different classes , 2007 .

[20]  James M. Douglas,et al.  A hierarchical decision procedure for process synthesis , 1985 .

[21]  B. Linnhoff,et al.  Pinch analysis : a state-of-the-art overview : Techno-economic analysis , 1993 .

[22]  Chonghun Han,et al.  Automation in Design: The Conceptual Synthesis of Chemical Processing Schemes , 1995 .

[23]  Ignacio E. Grossmann,et al.  A note on approximation techniques used for process optimization , 1985 .

[24]  Johann Stichlmair,et al.  Superstructures for the mixed integer optimization of nonideal and azeotropic distillation processes , 1996 .

[25]  Xiao-Ning Li,et al.  Conceptual process synthesis: past and current trends , 2004 .

[26]  Wen Zhou,et al.  Non-ideal reactor network synthesis through IDEAS: Attainable region construction , 2006 .

[27]  Eric Croiset,et al.  Simulation of CO2 capture using MEA scrubbing: a flowsheet decomposition method , 2005 .

[28]  L. T. Fan,et al.  Combinatorial foundation for logical formulation in process network synthesis , 2000 .

[29]  M. Ierapetritou,et al.  A kriging method for the solution of nonlinear programs with black‐box functions , 2007 .

[30]  Iqbal M. Mujtaba,et al.  Neural network based modelling and control of batch reactor. , 2006 .

[31]  Christodoulos A. Floudas,et al.  Optimization of complex reactor networks—I. Isothermal operation , 1990 .

[32]  Ignacio E. Grossmann,et al.  Multilevel-hierarchical MINLP synthesis of process flowsheets , 1997 .

[33]  Ignacio E. Grossmann,et al.  Generalized Convex Disjunctive Programming: Nonlinear Convex Hull Relaxation , 2003, Comput. Optim. Appl..

[34]  M. D. McKay,et al.  A comparison of three methods for selecting values of input variables in the analysis of output from a computer code , 2000 .

[35]  Zdravko Kravanja,et al.  An integrated strategy for the hierarchical multilevel MINLP synthesis of overall process flowsheets using the combined synthesis/analysis approach , 2004, Comput. Chem. Eng..

[36]  Sundar Krishnamurty,et al.  Preference-Based Surrogate Modeling in Engineering Design , 2007 .

[37]  D. Glasser,et al.  A geometric approach to steady flow reactors: the attainable region and optimization in concentration space , 1987 .

[38]  Warren D. Seider,et al.  Journal review. Azeotropic distillation , 1996 .

[39]  R. Raman,et al.  Modelling and computational techniques for logic based integer programming , 1994 .

[40]  Fabiano A.N. Fernandes,et al.  Optimization of Fischer‐Tropsch Synthesis Using Neural Networks , 2006 .

[41]  M. Rijckaert,et al.  Intelligent modelling in the chemical process industry with neural networks : A case study , 1998 .

[42]  Matthew J. Realff,et al.  Optimization and Validation of Steady-State Flowsheet Simulation Metamodels , 2002 .

[43]  T. Ray,et al.  A framework for design optimization using surrogates , 2005 .

[44]  C. Floudas,et al.  Synthesis of general distillation sequences : nonsharp separations , 1990 .

[45]  K. R. Westerterp,et al.  Safe design of cooled tubular reactors for exothermic multiple reactions: Multiple-reaction networks , 1988 .

[46]  Lorenz T. Biegler,et al.  An MPEC formulation for dynamic optimization of distillation operations , 2004, Comput. Chem. Eng..

[47]  Zdravko Kravanja,et al.  Simultaneous MINLP synthesis of heat exchanger networks comprising different exchanger types , 2002 .

[48]  L. T. Fan,et al.  Graph-theoretic approach to process synthesis: axioms and theorems , 1992 .

[49]  Mahmoud M. El-Halwagi,et al.  Synthesis of mass exchange networks , 1989 .

[50]  Michael C. Ferris,et al.  An extended mathematical programming framework , 2009, Comput. Chem. Eng..

[51]  Thierry Denoeux,et al.  Neural networks for process control and optimization: two industrial applications. , 2003, ISA transactions.

[52]  Bernard Widrow,et al.  Improving the learning speed of 2-layer neural networks by choosing initial values of the adaptive weights , 1990, 1990 IJCNN International Joint Conference on Neural Networks.

[53]  Christodoulos A. Floudas,et al.  Automatic generation of multiperiod heat exchanger network configurations , 1987 .

[54]  I. Grossmann,et al.  An algorithm for the use of surrogate models in modular flowsheet optimization , 2008 .

[55]  Sanjay Mehrotra,et al.  A branch-and-cut method for 0-1 mixed convex programming , 1999, Math. Program..

[56]  Miguel J. Bagajewicz,et al.  Mass/heat‐exchange network representation of distillation networks , 1992 .

[57]  I. Grossmann,et al.  A systematic modeling framework of superstructure optimization in process synthesis , 1999 .

[58]  Wei Chen,et al.  A non‐stationary covariance‐based Kriging method for metamodelling in engineering design , 2007 .

[59]  Donald R. Jones,et al.  Efficient Global Optimization of Expensive Black-Box Functions , 1998, J. Glob. Optim..

[60]  Lorenz T. Biegler,et al.  Synthesis of Optimal Chemical Reactor Networks , 1996 .

[61]  Ignacio E. Grossmann,et al.  Computational implementation of non-linear convex hull reformulation , 2007, Comput. Chem. Eng..

[62]  Ignacio E. Grossmann,et al.  A modelling and decomposition strategy for the MINLP optimization of process flowsheets , 1989 .

[63]  Matthew J. Realff,et al.  Metamodeling Approach to Optimization of Steady-State Flowsheet Simulations: Model Generation , 2002 .