The role of submesoscale currents in structuring marine ecosystems

From microbes to large predators, there is increasing evidence that marine life is shaped by short-lived submesoscales currents that are difficult to observe, model, and explain theoretically. Whether and how these intense three-dimensional currents structure the productivity and diversity of marine ecosystems is a subject of active debate. Our synthesis of observations and models suggests that the shallow penetration of submesoscale vertical currents might limit their impact on productivity, though ecological interactions at the submesoscale may be important in structuring oceanic biodiversity.Short-lived three-dimensional submesoscale currents, responsible for swirling ocean color chlorophyll filaments, have long been thought to affect productivity. Current research suggests they may not be effective in enhancing phytoplankton growth, but may have important contributions to biodiversity.

[1]  James C. McWilliams,et al.  The emergence of isolated coherent vortices in turbulent flow , 1984, Journal of Fluid Mechanics.

[2]  Patrice Klein,et al.  New production stimulated by high‐frequency winds in a turbulent mesoscale eddy field , 2009 .

[3]  R. Ferrari,et al.  Frontogenesis, and the Stratification of the Surface Mixed Layer, , 2008 .

[4]  B. Gemmell,et al.  Dynamic sinking behaviour in marine phytoplankton: rapid changes in buoyancy may aid in nutrient uptake , 2016, Proceedings of the Royal Society B: Biological Sciences.

[5]  Peter Franks,et al.  Phytoplankton blooms at fronts: Patterns, scales, and physical forcing mechanisms , 1992 .

[6]  D. Olbers The Mid-ocean Dynamics Experiment , 1978 .

[7]  Ralf Goericke,et al.  Sharp gradients in phytoplankton community structure across a frontal zone in the California Current Ecosystem , 2012 .

[8]  Roman Stocker,et al.  Thin phytoplankton layers: characteristics, mechanisms, and consequences. , 2012, Annual review of marine science.

[9]  David P. Marshall,et al.  The seasonal cycle of submesoscale flows , 2015 .

[10]  David M. Karl,et al.  Nitrate supply from deep to near-surface waters of the North Pacific subtropical gyre , 2010, Nature.

[11]  H. Graber,et al.  Mesoscale circulation and the surface distribution of copepods near the south Florida keys , 2003 .

[12]  Christian E. Buckingham,et al.  Seasonality of submesoscale flows in the ocean surface boundary layer , 2016 .

[13]  P. Strutton,et al.  Quantifying the influence of sub-mesoscale dynamics on the supply of iron to Southern Ocean phytoplankton blooms , 2016 .

[14]  Subrata Ray Numerical Model , 2019, Fortran 2018 with Parallel Programming.

[15]  M. Follows,et al.  Co‐existence of distinct Ostreococcus ecotypes at an oceanic front , 2017 .

[16]  Lee-Lueng Fu,et al.  Observing Oceanic Submesoscale Processes From Space , 2008 .

[17]  Meric A. Srokosz,et al.  Plankton patchiness investigated using simultaneous nitrate and chlorophyll observations , 2016 .

[18]  Frank E. Hoge,et al.  Spatial Variability In Near-Surface Chlorophyll-A Fluorescence Measured By The Airborne Oceanographic Lidar (AOL) , 1993 .

[19]  Mary Jane Perry,et al.  Eddy-driven subduction exports particulate organic carbon from the spring bloom , 2015, Science.

[20]  A. Mahadevan,et al.  Quantifying the impact of submesoscale processes on the spring phytoplankton bloom in a turbulent upper ocean using a Lagrangian approach , 2016 .

[21]  P. Franks,et al.  Phytoplankton patches at fronts : A model of formation and response to wind events , 1997 .

[22]  Patrice Klein,et al.  Impact of sub-mesoscale physics on production and subduction of phytoplankton in an oligotrophic regime , 2001 .

[23]  G. Caniaux,et al.  A four‐dimensional mesoscale map of the spring bloom in the northeast Atlantic (POMME experiment): Results of a prognostic model , 2005 .

[24]  R. Kipp Shearman,et al.  The latmix summer campaign: Submesoscale stirring in the upper ocean , 2015 .

[25]  Janet Campbell,et al.  Biogeochemical patchiness at the sea surface , 2002 .

[26]  Walter Munk,et al.  Spirals on the sea , 2000, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[27]  M. Ohman,et al.  Lagrangian studies of phytoplankton growth and grazing relationships in a coastal upwelling ecosystem off Southern California , 2009 .

[28]  P. Carlsson,et al.  Species- and stratification-dependent diel vertical migration behaviour of three dinoflagellate species in a laboratory study , 2009 .

[29]  Craig M. Lee,et al.  Eddy-Driven Stratification Initiates North Atlantic Spring Phytoplankton Blooms , 2012, Science.

[30]  Lee-Lueng Fu,et al.  Reconstructability of Three-Dimensional Upper-Ocean Circulation from SWOT Sea Surface Height Measurements , 2016 .

[31]  G. Rollwagen‐Bollens,et al.  Predator-enhanced diel vertical migration in a planktonic dinoflagellate , 2012 .

[32]  J. W. Zhang,et al.  Eddy-induced mixed layer shallowing and mixed layer/thermocline exchange , 2000 .

[33]  S. Souissi,et al.  Surface patterns of zooplankton spatial variability detected by high frequency sampling in the NW Mediterranean. Role of density fronts , 2008 .

[34]  M. Lévy,et al.  Low‐frequency and high‐frequency oscillatory winds synergistically enhance nutrient entrainment and phytoplankton at fronts , 2017 .

[35]  F. d’Ovidio,et al.  Can we detect oceanic biodiversity hotspots from space? , 2013, The ISME Journal.

[36]  Ilan Koren,et al.  A Satellite-Based Lagrangian View on Phytoplankton Dynamics. , 2018, Annual review of marine science.

[37]  Helga S. Huntley,et al.  Submesoscale dispersion in the vicinity of the Deepwater Horizon spill , 2014, Proceedings of the National Academy of Sciences.

[38]  M. Lévy,et al.  Grid degradation of submesoscale resolving ocean models: Benefits for offline passive tracer transport , 2012 .

[39]  A. Oschlies Can eddies make ocean deserts bloom? , 2002 .

[40]  N. Stenseth,et al.  Fine-scale recognition and use of mesoscale fronts by foraging Cape gannets in the Benguela upwelling region , 2014 .

[41]  Submesoscale Stirring in the Upper Ocean , 2015 .

[42]  Amit Tandon,et al.  Submesoscale Processes and Dynamics , 2013 .

[43]  James C. McWilliams,et al.  Eddy-induced reduction of biological production in eastern boundary upwelling systems , 2011 .

[44]  Baylor Fox-Kemper,et al.  The role of mixed-layer instabilities in submesoscale turbulence , 2015, Journal of Fluid Mechanics.

[45]  Henri Weimerskirch,et al.  Top marine predators track Lagrangian coherent structures , 2009, Proceedings of the National Academy of Sciences.

[46]  Carl Wunsch,et al.  Preliminary assessment of the accuracy and precision of TOPEX/POSEIDON altimeter data with respect to the large‐scale ocean circulation , 1994 .

[47]  Donald B. Olson,et al.  Life on the edge : marine life and fronts , 1994 .

[48]  M. Lévy,et al.  Synoptic‐to‐planetary scale wind variability enhances phytoplankton biomass at ocean fronts , 2017 .

[49]  Peter R. Kramer,et al.  Diagnosing Lateral Mixing in the Upper Ocean with Virtual Tracers: Spatial and Temporal Resolution Dependence , 2011 .

[50]  Christophe Guinet,et al.  Flexible preference of southern elephant seals for distinct mesoscale features within the Antarctic Circumpolar Current , 2015, Progress in Oceanography.

[51]  K. Johnson,et al.  Physical and biological controls of nitrate concentrations in the upper subtropical North Pacific Ocean , 2013 .

[52]  David Archer,et al.  Modeling the impact of fronts and mesoscale circulation on the nutrient supply and biogeochemistry of the upper ocean , 2000 .

[53]  Adrian P. Martin Phytoplankton patchiness: the role of lateral stirring and mixing , 2003 .

[54]  F. d’Ovidio,et al.  Ecological implications of eddy retention in the open ocean: a Lagrangian approach , 2013, Journal of Physics A: Mathematical and Theoretical.

[55]  R. Harcourt,et al.  Three-Dimensional Structure and Temporal Evolution of Submesoscale Thermohaline Intrusions in the North Pacific Subtropical Frontal Zone , 2010 .

[56]  Y. Sasai,et al.  Seasonal Mesoscale and Submesoscale Eddy Variability along the North Pacific Subtropical Countercurrent , 2014 .

[57]  Ewold Verhagen,et al.  Nonlinear cavity optomechanics with nanomechanical thermal fluctuations , 2016, Nature Communications.

[58]  B. Jones,et al.  Eddy stirring and phytoplankton patchiness in the subarctic North Atlantic in late summer , 1998 .

[59]  Impact of eddy-driven vertical fluxes on phytoplankton abundance in the euphotic layer , 2011 .

[60]  L. Talley,et al.  Crossing the line: Tunas actively exploit submesoscale fronts to enhance foraging success , 2017 .

[61]  M. Follows,et al.  Fine scale phytoplankton community structure across the Kuroshio Front , 2014 .

[62]  G. Reygondeau,et al.  Monitoring marine phytoplankton seasonality from space , 2012 .

[63]  Adrian P. Martin,et al.  Bringing physics to life at the submesoscale , 2012 .

[64]  Scott C. Doney,et al.  Eddy‐driven sources and sinks of nutrients in the upper ocean: Results from a 0.1° resolution model of the North Atlantic , 2003 .

[65]  A. Longhurst Ecological Geography of the Sea , 1998 .

[66]  Jan Kaiser,et al.  Estimates of net community production and export using high-resolution, Lagrangian measurements of O2, NO3−, and POC through the evolution of a spring diatom bloom in the North Atlantic , 2012 .

[67]  P. Flament,et al.  Cautionary remarks on the spectral interpretation of turbulent flows , 1985 .

[68]  Amala Mahadevan,et al.  The Impact of Submesoscale Physics on Primary Productivity of Plankton. , 2016, Annual review of marine science.

[69]  J. R. Taylor,et al.  Ocean fronts trigger high latitude phytoplankton blooms , 2011 .

[70]  M. Pujol,et al.  The biogeochemical structuring role of horizontal stirring: Lagrangian perspectives on iron delivery downstream of the Kerguelen Plateau , 2015 .

[71]  Annalisa Bracco,et al.  Horizontal advection, diffusion and plankton spectra at the sea surface , 2009 .

[72]  E. Campos,et al.  Submesoscale activity over the Argentinian shelf , 2008 .

[73]  J. C. Swallow,et al.  Some further deep current measurements using neutrally-buoyant floats , 1957 .

[74]  Kelvin J. Richards,et al.  Transient upwelling hot spots in the oligotrophic North Pacific , 2010 .

[75]  James C. McWilliams,et al.  Submesoscale currents in the ocean , 2016, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[76]  Craig M. Lee,et al.  Enhanced Turbulence and Energy Dissipation at Ocean Fronts , 2011, Science.

[77]  S. De Monte,et al.  Estimating planktonic diversity through spatial dominance patterns in a model ocean. , 2016, Marine genomics.

[78]  Stephanie Dutkiewicz,et al.  The dynamical landscape of marine phytoplankton diversity , 2015, Journal of The Royal Society Interface.

[79]  Francesco d'Ovidio,et al.  Stirring of the northeast Atlantic spring bloom: A Lagrangian analysis based on multisatellite data , 2007 .

[80]  J. Avrin The Lagrangian Approach , 2015 .

[81]  G. Batchelor Small-scale variation of convected quantities like temperature in turbulent fluid Part 1. General discussion and the case of small conductivity , 1959, Journal of Fluid Mechanics.

[82]  P. Franks,et al.  Thin layers of plankton: Formation by shear and death by diffusion , 2008 .

[83]  L. Prieur,et al.  Advanced insights into sources of vertical velocity in the ocean , 2006 .

[84]  Christian E. Buckingham,et al.  Open-Ocean Submesoscale Motions: A Full Seasonal Cycle of Mixed Layer Instabilities from Gliders , 2016 .

[85]  F. d’Ovidio,et al.  Scale‐dependent interactions of Mediterranean whales with marine dynamics , 2011 .

[86]  Mark D. Ohman,et al.  Mesozooplankton and particulate matter responses to a deep-water frontal system in the southern California Current System , 2012 .

[87]  J. Marshall,et al.  Global surface eddy diffusivities derived from satellite altimetry , 2013 .

[88]  M. Follows,et al.  Phytoplankton diversity and community structure affected by oceanic dispersal and mesoscale turbulence , 2014 .

[89]  G. Madec,et al.  On the role of the mesoscale circulation on an idealized coastal upwelling ecosystem , 2010 .

[90]  A. P. Martin,et al.  Plankton distribution spectra: inter‐size class variability and the relative slopes for phytoplankton and zooplankton , 2002 .

[91]  D. Sims,et al.  Selective foraging behaviour of basking sharks on zooplankton in a small-scale front , 1998, Nature.

[92]  L. Prieur,et al.  Phytoplankton dynamics associated with a geostrophic front: Ecological and biogeochemical implications , 1994 .

[93]  Adrian P. Martin,et al.  Spatially implicit plankton population models: Transient spatial variability. , 2008, Journal of theoretical biology.

[94]  Edward R. Abraham,et al.  The generation of plankton patchiness by turbulent stirring , 1998, Nature.

[95]  Adam T. Greer,et al.  Fine-scale planktonic habitat partitioning at a shelf-slope front revealed by a high-resolution imaging system , 2015 .

[96]  Jonathan Gula,et al.  Seasonality in submesoscale turbulence , 2015, Nature Communications.

[97]  P. Klein,et al.  Three-dimensional stirring of thermohaline fronts , 1998 .

[98]  A. E. Gill,et al.  Energy partition in the large-scale ocean circulation and the production of mid-ocean eddies , 1974 .

[99]  Michel Rixen,et al.  Diatom carbon export enhanced by silicate upwelling in the northeast Atlantic , 2005, Nature.

[100]  P. Gent,et al.  Eliassen–Palm Fluxes and the Momentum Equation in Non-Eddy-Resolving Ocean Circulation Models , 1996 .

[101]  Raffaele Ferrari,et al.  A Frontal Challenge for Climate Models , 2011, Science.

[102]  D. Mackas,et al.  Spectral Analysis of Zooplankton Spatial Heterogeneity , 1979, Science.

[103]  Peter Sakalaukus,et al.  Impact of submesoscale processes on dynamics of phytoplankton filaments , 2015 .

[104]  Bo Qiu,et al.  Impact of oceanic-scale interactions on the seasonal modulation of ocean dynamics by the atmosphere , 2014, Nature Communications.

[105]  Craig M. Lee,et al.  Intensification of ocean fronts by down-front winds , 2005 .

[106]  R. Ferrari,et al.  The Production and Dissipation of Compensated Thermohaline Variance by Mesoscale Stirring , 2009 .

[107]  Gurvan Madec,et al.  Large-scale impacts of submesoscale dynamics on phytoplankton: Local and remote effects , 2012 .

[108]  Michael R. Landry,et al.  Enhanced nitrate fluxes and biological processes at a frontal zone in the southern California current system , 2012 .

[109]  W. Owens,et al.  Eddy stirring and horizontal diffusivity from Argo float observations: Geographic and depth variability , 2015 .

[110]  S. Piontkovski,et al.  Spatial heterogeneity of the planktonic fields in the upper mixed layer of the open ocean , 1997 .

[111]  G. Vallis Atmospheric and Oceanic Fluid Dynamics: Fundamentals and Large-Scale Circulation , 2017 .

[112]  Gurvan Madec,et al.  The onset of a bloom after deep winter convection in the northwestern Mediterranean sea: mesoscale process study with a primitive equation model , 1998 .

[113]  H. Weimerskirch,et al.  Frigatebird behaviour at the ocean–atmosphere interface: integrating animal behaviour with multi-satellite data , 2012, Journal of The Royal Society Interface.

[114]  J. McWilliams,et al.  Submesoscale Cold Filaments in the Gulf Stream , 2014 .

[115]  G. Maze,et al.  Intensification of Upper-Ocean Submesoscale Turbulence through Charney Baroclinic Instability , 2016 .

[116]  Craig M. Lee,et al.  A simple optical index shows spatial and temporal heterogeneity in phytoplankton community composition during the 2008 North Atlantic Bloom Experiment , 2015 .

[117]  Curt Schurgers,et al.  A swarm of autonomous miniature underwater robot drifters for exploring submesoscale ocean dynamics , 2017, Nature Communications.

[118]  Marina Lévy,et al.  The influence of mesoscale and submesoscale heterogeneity on ocean biogeochemical reactions , 2013 .

[119]  N. Levine,et al.  Enhancement of phytoplankton chlorophyll by submesoscale frontal dynamics in the North Pacific Subtropical Gyre , 2016, Geophysical research letters.

[120]  R. Ferrari,et al.  Symmetric instability in the Gulf Stream , 2013 .

[121]  P. Testor,et al.  Finescale Vertical Structure of the Upwelling System off Southern Peru as Observed from Glider Data , 2013 .

[122]  R. Ferrari,et al.  Shutdown of convection triggers increase of surface chlorophyll , 2014 .

[123]  S. Spall,et al.  A numerical model of mesoscale frontal instabilities and plankton dynamics — I. Model formulation and initial experiments , 2000 .

[124]  B. Fox‐Kemper,et al.  Parameterization of Mixed Layer Eddies. Part I. Theory and Diagnosis , 2008 .

[125]  E. Fernández,et al.  Thermohaline structure, ageostrophic vertical velocity fields and phytoplankton distribution and production in the northeast Atlantic subtropical front , 2004 .

[126]  J. Marshall,et al.  Scales, Growth Rates, and Spectral Fluxes of Baroclinic Instability in the Ocean , 2011 .

[127]  Adrian P. Martin,et al.  An observational assessment of the influence of mesoscale and submesoscale heterogeneity on ocean biogeochemical reactions , 2015 .

[128]  Glenn R. Flierl,et al.  Copepod Aggregations: Influences of Physics and Collective Behavior , 2015 .

[129]  L. Fu Recent progress in the application of satellite altimetry to observing the mesoscale variability and general circulation of the oceans , 1983 .

[130]  P. Franks,et al.  A pseudo‐Lagrangian method for remapping ocean biogeochemical tracer data: Calculation of net Chl‐a growth rates , 2015 .

[131]  Brian Hoover,et al.  Prey Patch Patterns Predict Habitat Use by Top Marine Predators with Diverse Foraging Strategies , 2013, PLoS ONE.

[132]  K. Denman,et al.  Phytoplankton patchiness indicates the fluctuation spectrum of mesoscale oceanic structure , 1980, Nature.

[133]  S. De Monte,et al.  Fluid dynamical niches of phytoplankton types , 2010, Proceedings of the National Academy of Sciences.

[134]  A. Mahadevan,et al.  Enhancement in vertical fluxes at a front by mesoscale‐submesoscale coupling , 2014 .

[135]  D. Fratantoni,et al.  A thin layer of phytoplankton observed in the Philippine Sea with a synthetic moored array of autonomous gliders , 2009 .

[136]  Mark D. Ohman,et al.  Changes in zooplankton habitat, behavior, and acoustic scattering characteristics across glider-resolved fronts in the Southern California Current System , 2015 .

[137]  P. Testor,et al.  A submesoscale coherent vortex in the Ligurian Sea: From dynamical barriers to biological implications , 2017 .

[138]  F. D’Ortenzio,et al.  Seasonal variability of nutrient concentrations in the Mediterranean Sea: Contribution of Bio-Argo floats , 2015 .

[139]  John R. Taylor,et al.  Accumulation and subduction of buoyant material at submesoscale fronts , 2018 .

[140]  A. Ōkubo,et al.  Turbulence, diffusion and patchiness in the sea , 1994 .

[141]  R. Riegman,et al.  Effect of nitrogen source on the size distribution within marine phytoplankton populations , 1994 .

[142]  Gurvan Madec,et al.  Modifications of gyre circulation by sub-mesoscale physics , 2010 .

[143]  James C. McWilliams,et al.  Mesoscale to submesoscale transition in the California current system. Part III: Energy balance and flux , 2008 .

[144]  M. Lévy,et al.  Modifications of mode water properties by sub-mesoscales in a bio-physical model of the Northeast Atlantic , 2011 .

[145]  Stirring effects in models of oceanic plankton populations. , 2012, Chaos.

[146]  E. Boss,et al.  Dispersion/dilution enhances phytoplankton blooms in low-nutrient waters , 2017, Nature Communications.

[147]  W. Zenk,et al.  The Mid-Ocean Dynamics Experiment , 1978 .

[148]  Giulio Boccaletti,et al.  Mixed Layer Instabilities and Restratification , 2007 .

[149]  Fabrizio D'Ortenzio,et al.  Submesoscale physical‐biogeochemical coupling across the Ligurian current (northwestern Mediterranean) using a bio‐optical glider , 2008 .

[150]  M. Perry,et al.  Evidence of small‐scale spatial structuring of phytoplankton alpha‐ and beta‐diversity in the open ocean , 2016 .

[151]  M. Macvean,et al.  Redistribution of scalars during upper ocean frontogenesis:A numerical model , 1980 .

[152]  M. Budyansky,et al.  Identifying Lagrangian fronts with favourable fishery conditions , 2012, 1208.0647.

[153]  Adam T. Greer,et al.  Environmental drivers of the fine-scale distribution of a gelatinous zooplankton community across a mesoscale front , 2014 .