Starfruit Shape Defect Estimation Based on Concave and Convex Area of a Closed Planar Curve

Dalam kertas kerja ini, sebuah perwakilan bentuk berdasarkan kawasan cekung dan cembung di sepanjang keluk tertutup dipersembahkan. Teknik yang dicadangkan dalam kertas kerja ini melibatkan proses anggaran kekelukan daripada keluk masukan dan juga proses pencarian titik kritikal pada keluk masukan tersebut. Dengan mengasingkan titik kritikal tersebut kepada kategori cekung dan cembung, pengiraan kawasan cekung dan cembung dilakukan. Daripada ciri–ciri statistik ini, dua permasalahan berkaitan dengan bentuk disiasat. Di sini, teknik yang dicadangkan diuji terhadap proses penganggaran kerosakan bentuk dan pengenalan bentuk pada buah belimbing. Pada kes pertama, kerosakan bentuk belimbing diukur dengan mengira kuasa cekung di mana kuasa cekung ini adalah selanjar dengan kerosakan bentuk tersebut. Untuk kes pengenalpastian bentuk pula, tangkai belimbing adalah objek untuk dikenal pasti dan tangkai belimbing ini akan diasingkan daripada bentuk belimbing kerana ia akan menyumbang kepada kesalahan pengiraan kerosakan bentuk belimbing. Bagi kedua–dua kes, teknik yang dicadangkan diuji dengan tiga teknik penganggaran kekelukan untuk memastikan keberkesanan teknik yang dicadangkan. Kata kunci: Perwakilan bentuk, kekelukan, titik kritikal, kawasan cekung dan cembung In this paper, a shape representation based on concave and convex area along a closed curve is presented. The proposed technique involves the process of the curvature estimation from the input curve and search for its corresponding critical points. By splitting the critical points into concave and convex categories, the concave and convex area are computed. From these statistical features, two problems related to the shape (curve) are investigated. Here, the proposed technique is tested on shape defect estimation and shape recognition of starfruit. In the first case, defect is measured by computing concave energy, which is proportional to the defect. For shape recognition, starfruit’s stem is identified and removed from the starfruit’s shape, as it will contributes false computation of defect measurement. For both cases, the proposed technique is tested with three different curvature estimation techniques to validate the results. Key words: Shape representation, curvature, critical point, concave and convex area

[1]  Anil K. Jain,et al.  On reliable curvature estimation , 1989, CVPR.

[2]  Martin A. Fischler,et al.  Locating Perceptually Salient Points on Planar Curves , 1994, IEEE Trans. Pattern Anal. Mach. Intell..

[3]  H. Ip,et al.  Fast conditioning algorithm for significant zero curvature detection , 1997 .

[4]  Farzin Mokhtarian,et al.  Robust Image Corner Detection Through Curvature Scale Space , 1998, IEEE Trans. Pattern Anal. Mach. Intell..

[5]  Kang-Hyun Jo,et al.  Hands shape recognition using moment invariant for the Korean sign language recognition , 2003, 7th Korea-Russia International Symposium on Science and Technology, Proceedings KORUS 2003. (IEEE Cat. No.03EX737).

[6]  Ming-Kuei Hu,et al.  Visual pattern recognition by moment invariants , 1962, IRE Trans. Inf. Theory.

[7]  James L. McClelland,et al.  B-Spline Contour Representation and Symmetry Detection , 1993 .

[8]  Milan Sonka,et al.  Image Processing, Analysis and Machine Vision , 1993, Springer US.

[9]  Pengfei Zhu,et al.  On Critical Point Detection of Digital Shapes , 1995, IEEE Trans. Pattern Anal. Mach. Intell..

[10]  Godfried T. Toussaint,et al.  A historical note on convex hull finding algorithms , 1985, Pattern Recognit. Lett..

[11]  Milan Sonka,et al.  Image processing analysis and machine vision [2nd ed.] , 1999 .

[13]  Elli Angelopoulou,et al.  Sign of Gaussian Curvature From Curve Orientation in Photometric Space , 1998, IEEE Trans. Pattern Anal. Mach. Intell..

[14]  Gershon Elber,et al.  A comparison of Gaussian and mean curvatures estimation methods on triangular meshes , 2003, 2003 IEEE International Conference on Robotics and Automation (Cat. No.03CH37422).

[15]  Godfried T. Toussaint A counter-example to a convex hull algorithm for polygons , 1991, Pattern Recognit..

[16]  William E. Higgins,et al.  Shape Representation: Comparison between the Morphological Skeleton and Morphological Shape Decomposition , 1994, ICIP.

[17]  Joon Hee Han,et al.  Distance accumulation and planar curvature , 1993, 1993 (4th) International Conference on Computer Vision.

[18]  G. R. Wilson,et al.  Convex hull of chain-coded blob , 1989 .

[19]  Yufeng Chen,et al.  Local moment invariant analysis , 2005, International Conference on Computer Graphics, Imaging and Visualization (CGIV'05).

[20]  Xiaorong Li,et al.  Group Direction Difference Chain Codes For The Representation Of The Border , 1988, Defense, Security, and Sensing.

[21]  Roland T. Chin,et al.  On the Detection of Dominant Points on Digital Curves , 1989, IEEE Trans. Pattern Anal. Mach. Intell..

[22]  David Avis,et al.  A Linear Algorithm for Finding the Convex Hull of a Simple Polygon , 1979, Inf. Process. Lett..

[23]  Thomas S. Huang,et al.  Image processing , 1971 .

[24]  Robert B. Ash,et al.  Information Theory , 2020, The SAGE International Encyclopedia of Mass Media and Society.

[25]  Azriel Rosenfeld,et al.  Picture languages: Formal models for picture recognition , 1979 .

[26]  Anil K. Jain Fundamentals of Digital Image Processing , 2018, Control of Color Imaging Systems.

[27]  Zhengwei Yang,et al.  Image registration and object recognition using affine invariants and convex hulls , 1999, IEEE Trans. Image Process..