Invariant tests for symmetry about an unspecified point based on the empirical characteristic function

This paper considers a flexible class of omnibus affine invariant tests for the hypothesis that a multivariate distribution is symmetric about an unspecified point. The test statistics are weighted integrals involving the imaginary part of the empirical characteristic function of suitably standardized given data, and they have an alternative representation in terms of an L2-distance of nonparametric kernel density estimators. Moreover, there is a connection with two measures of multivariate skewness. The tests are performed via a permutational procedure that conditions on the data.

[1]  K. Mukherjee,et al.  Central limit theorems revisited , 2000 .

[2]  Tamás F. Móri,et al.  On Multivariate Skewness and Kurtosis , 1994 .

[3]  Norbert Henze,et al.  Extreme smoothing and testing for multivariate normality , 1997 .

[4]  S. Rachev,et al.  Testing Multivariate Symmetry , 1995 .

[5]  Norbert Henze,et al.  Limit laws for multivariate skewness in the sense of Móri, Rohatgi and Székely , 1997 .

[6]  Dennis D. Boos,et al.  A Test for Asymmetry Associated with the Hodges-Lehmann Estimator , 1982 .

[7]  N. Henze,et al.  Theory & Methods: Weighted Integral Test Statistics and Components of Smooth Tests of Fit , 2000 .

[8]  Lixing Zhu,et al.  Permutation Tests for Reflected Symmetry , 1998 .

[9]  P. K. Bhattacharya,et al.  Two modified Wilcoxon tests for symmetry about an unknown location parameter , 1982 .

[10]  Norbert Henze,et al.  A New Approach to the BHEP Tests for Multivariate Normality , 1997 .

[11]  A. Feuerverger,et al.  The Empirical Characteristic Function and Its Applications , 1977 .

[12]  C. Heathcote,et al.  Some results concerning symmetric distributions , 1982, Bulletin of the Australian Mathematical Society.

[13]  Takeaki Kariya,et al.  Robust Tests for Spherical Symmetry , 1977 .

[14]  F. Ruymgaart,et al.  Applications of empirical characteristic functions in some multivariate problems , 1992 .

[15]  Ludwig Baringhaus,et al.  Testing for Spherical Symmetry of a Multivariate Distribution , 1991 .

[16]  Richard C Barker,et al.  Using the bootstrap in testing symmetry versus asymmetry , 1987 .

[17]  M. King Robust Tests for Spherical Symmetry and Their Application to Least Squares Regression , 1980 .

[18]  M. L. Eaton,et al.  The Non-Singularity of Generalized Sample Covariance Matrices , 1973 .

[19]  O. Barndorff-Nielsen,et al.  On the Limit Behaviour of Extreme Order Statistics , 1963 .

[20]  Sándor Csörgő,et al.  Testing for symmetry , 1987 .

[21]  Terry L King Smooth Tests of Goodness of Fit , 1991 .

[22]  A note on testing symmetry with estimated parameters , 1985 .

[23]  S. Aki Asymptotic distribution of a Cramér-von mises type statistic for testing symmetry when the center is estimated , 1981 .

[24]  Kjell A. Doksum,et al.  Plots and tests for symmetry , 1977 .

[25]  K. Mardia Measures of multivariate skewness and kurtosis with applications , 1970 .

[26]  I. A. Koutrouvelis Distribution-free procedures for location and symmetry inference problems based on the empirical characteristic function , 1985 .