Enhancement of heat transfer using nanofluids—An overview

A colloidal mixture of nano-sized particles in a base fluid, called nanofluids, tremendously enhances the heat transfer characteristics of the original fluid, and is ideally suited for practical applications due to its marvelous characteristics. This article addresses the unique features of nanofluids, such as enhancement of heat transfer, improvement in thermal conductivity, increase in surface volume ratio, Brownian motion, thermophoresis, etc. In addition, the article summarizes the recent research in experimental and theoretical studies on forced and free convective heat transfer in nanofluids, their thermo-physical properties and their applications, and identifies the challenges and opportunities for future research.

[1]  S. U. S. Choi,et al.  Review and assessment of nanofluid technology for transportation and other applications. , 2007 .

[2]  Dongsoo Jung,et al.  Nucleate boiling heat transfer coefficients of pure halogenated refrigerants. , 2003 .

[3]  Yukihiro Tsukasaki,et al.  Magnetic properties of ferromagnetic ultrafine particles prepared by vacuum evaporation on running oil substrate , 1978 .

[4]  W. Roetzel,et al.  Conceptions for heat transfer correlation of nanofluids , 2000 .

[5]  C. T. Nguyen,et al.  Heat transfer enhancement using Al2O3–water nanofluid for an electronic liquid cooling system , 2007 .

[6]  Reiyu Chein,et al.  Analysis of microchannel heat sink performance using nanofluids , 2005 .

[7]  C. Choi,et al.  Soret and Dufour effects on convective instabilities in binary nanofluids for absorption application , 2007 .

[8]  E. Grulke,et al.  Heat transfer properties of nanoparticle-in-fluid dispersions (nanofluids) in laminar flow , 2005 .

[9]  Yulong Ding,et al.  Particle migration in a flow of nanoparticle suspensions , 2005 .

[10]  Y. Man,et al.  α-Tocopherol nanodispersions: Preparation, characterization and stability evaluation. , 2008 .

[11]  J. Z. Hilt,et al.  Poly(n-isopropylacrylamide)-based hydrogel coatings on magnetite nanoparticles via atom transfer radical polymerization , 2008, Nanotechnology.

[12]  S. M. You,et al.  Enhanced boiling heat transfer from microporous surfaces: effects of a coating composition and method , 1997 .

[13]  Somchai Wongwises,et al.  A critical review of convective heat transfer of nanofluids , 2007 .

[14]  Saeed Zeinali Heris,et al.  Experimental investigation of oxide nanofluids laminar flow convective heat transfer , 2006 .

[15]  Saeed Zeinali Heris,et al.  EXPERIMENTAL INVESTIGATION OF CONVECTIVE HEAT TRANSFER OF AL2O3/WATER NANOFLUID IN CIRCULAR TUBE , 2007 .

[16]  Sarit K. Das,et al.  Heat Transfer in Nanofluids—A Review , 2006 .

[17]  Haisheng Chen,et al.  Forced convective heat transfer of nanofluids , 2007 .

[18]  Yulong Ding,et al.  Experimental investigation into convective heat transfer of nanofluids at the entrance region under laminar flow conditions , 2004 .

[19]  Sanjeeva Witharana,et al.  Boiling of refrigerants on enhanced surfaces and boiling of nanofluids , 2003 .

[20]  Janos H. Fendler,et al.  Nanoparticles and Nanostructured Films , 1998 .

[21]  S. Phillpot,et al.  THERMAL TRANSPORT IN NANOFLUIDS1 , 2004 .

[22]  Qingsong Yu,et al.  Effect of nanofluid on the heat transport capability in an oscillating heat pipe , 2006 .

[23]  Guillaume Polidori,et al.  A note on heat transfer modelling of Newtonian nanofluids in laminar free convection , 2007 .

[24]  Nandy Putra,et al.  Pool boiling of nano-fluids on horizontal narrow tubes , 2003 .

[25]  Satish G. Kandlikar,et al.  Boiling and Condensation , 2005 .

[26]  Ping-Hei Chen,et al.  Effect of structural character of gold nanoparticles in nanofluid on heat pipe thermal performance , 2004 .

[27]  P. F. Vassallo,et al.  Pool boiling heat transfer experiments in silica–water nano-fluids , 2004 .

[28]  N. Galanis,et al.  Heat transfer enhancement by using nanofluids in forced convection flows , 2005 .

[29]  Nan Yao,et al.  Handbook of microscopy for nanotechnology , 2005 .

[30]  Somchai Wongwises,et al.  Nucleate pool boiling heat transfer of TiO2–R141b nanofluids , 2009 .

[31]  Joop Schoonman,et al.  Vapor-phase synthesis and processing of nanoparticle materials (NANO) - A European Science Foundation (ESF) program , 1998 .

[32]  J. Eastman,et al.  Novel Thermal Properties of Nanostructured Materials , 1999 .

[33]  W. Roetzel,et al.  Pool boiling characteristics of nano-fluids , 2003 .

[34]  B. Raj,et al.  Magnetic field induced extinction of light in a suspension of Fe3O4 nanoparticles , 2008 .

[35]  K. Khanafer,et al.  BUOYANCY-DRIVEN HEAT TRANSFER ENHANCEMENT IN A TWO-DIMENSIONAL ENCLOSURE UTILIZING NANOFLUIDS , 2003 .

[36]  H. Masuda,et al.  ALTERATION OF THERMAL CONDUCTIVITY AND VISCOSITY OF LIQUID BY DISPERSING ULTRA-FINE PARTICLES. DISPERSION OF AL2O3, SIO2 AND TIO2 ULTRA-FINE PARTICLES , 1993 .

[37]  Improvement on thermal performance of a disk-shaped miniature heat pipe with nanofluid , 2003 .

[38]  Jung-Yeul Jung,et al.  Forced convective heat transfer of nanofluids in microchannels , 2009 .

[39]  Yulong Ding,et al.  Heat transfer of aqueous suspensions of carbon nanotubes (CNT nanofluids) , 2006 .

[40]  S. Phillpot,et al.  Mechanisms of heat flow in suspensions of nano-sized particles (nanofluids) , 2002 .

[41]  D. R. Rector,et al.  Enhanced Heat Transfer Through the Use of Nanofluids in Forced Convection , 2004 .

[42]  Gad Hetsroni,et al.  Heat transfer to a liquid—solid mixture in a flume , 1994 .

[43]  Somchai Wongwises,et al.  Heat transfer enhancement and pressure drop characteristics of TiO2–water nanofluid in a double-tube counter flow heat exchanger , 2009 .

[44]  D. Jung,et al.  Enhancement of nucleate boiling heat transfer using carbon nanotubes , 2007 .

[45]  C. T. Nguyen,et al.  Heat transfer behaviours of nanofluids in a uniformly heated tube , 2004 .

[46]  Nigel Pickett,et al.  Nanocrystalline semiconductors: Synthesis, properties, and perspectives , 2001 .

[47]  Unfccc Kyoto Protocol to the United Nations Framework Convention on Climate Change , 1997 .

[48]  Jeongbae Kim,et al.  EXPERIMENTAL STUDY ON CHF CHARACTERISTICS OF WATER-TIO2 NANO-FLUIDS , 2006 .

[49]  E. Dreizin,et al.  Metal-based reactive nanomaterials , 2009 .

[50]  Stephen U. S. Choi,et al.  Application of metallic nanoparticle suspensions in advanced cooling systems , 1996 .

[51]  Clement Kleinstreuer,et al.  Laminar nanofluid flow in microheat-sinks , 2005 .

[52]  M. Oda,et al.  Research and applications of nano-particles in Japan , 1998 .

[53]  E. Grulke,et al.  Anomalous thermal conductivity enhancement in nanotube suspensions , 2001 .

[54]  C. T. Nguyen,et al.  Numerical investigation of laminar flow and heat transfer in a radial flow cooling system with the use of nanofluids , 2004 .

[55]  J. H. Kim,et al.  Effect of nanoparticles on critical heat flux of water in pool boiling heat transfer , 2003 .

[56]  Stephen U. S. Choi,et al.  Cooling performance of a microchannel heat sink with nanofluids , 2006 .

[57]  Y. Xuan,et al.  Investigation on Convective Heat Transfer and Flow Features of Nanofluids , 2003 .

[58]  Seok Pil Jang,et al.  Buoyancy-driven heat transfer of water-based Al2O3 nanofluids in a rectangular cavity , 2007 .

[59]  A. Bejan,et al.  Heat transfer handbook , 2003 .

[60]  G. P. Peterson,et al.  Mixing effect on the enhancement of the effective thermal conductivity of nanoparticle suspensions (nanofluids) , 2007 .

[61]  Xiangsheng Wu,et al.  Energy Savings with Energy-Efficient HVAC Systems in Commercial Buildings of Hong Kong , 2006 .

[62]  Yulong Ding,et al.  Formulation of nanofluids for natural convective heat transfer applications , 2005 .

[63]  C. T. Nguyen,et al.  Heat transfer enhancement in turbulent tube flow using Al2O3 nanoparticle suspension , 2006 .

[64]  Jason Chuang,et al.  Experimental microchannel heat sink performance studies using nanofluids , 2007 .

[65]  D. Astruc,et al.  Gold nanoparticles: assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology. , 2004, Chemical reviews.

[66]  J. Maxwell A Treatise on Electricity and Magnetism , 1873, Nature.

[67]  J. Buongiorno,et al.  Experimental Investigation of Turbulent Convective Heat Transfer and Pressure Loss of Alumina/Water and Zirconia/Water Nanoparticle Colloids (Nanofluids) in Horizontal Tubes , 2008 .

[68]  Dongsoo Jung,et al.  Boiling heat transfer enhancement with carbon nanotubes for refrigerants used in building air-conditioning , 2007 .

[69]  Patrick E. Phelan,et al.  Convective Heat Transfer With Nanofluids in a Single 1.02-mm Tube , 2006 .

[70]  D. Cahill,et al.  Nanofluids for thermal transport , 2005 .

[71]  Y. Xuan,et al.  Heat transfer enhancement of nanofluids , 2000 .

[72]  A. Mujumdar,et al.  Heat transfer characteristics of nanofluids: a review , 2007 .

[73]  XU Ji-wan Experimental Investigation on Flow and Convective Heat Transfer Feature of A Nanofluid for Aerospace Thermal Management , 2005 .

[74]  W. Roetzel,et al.  Natural convection of nano-fluids , 2003 .

[75]  Wenhua Yu,et al.  Nanofluids: Science and Technology , 2007 .

[76]  A. S. Ahuja Thermal design of a heat exchanger employing laminar flow of particle suspensions , 1982 .

[77]  Yulong Ding,et al.  Experimental investigation into the pool boiling heat transfer of aqueous based γ-alumina nanofluids , 2005 .

[78]  J. Buongiorno Convective Transport in Nanofluids , 2006 .

[79]  Nicolas Galanis,et al.  Effect of uncertainties in physical properties on forced convection heat transfer with nanofluids , 2007 .

[80]  Y. Yang,et al.  Boiling of suspension of solid particles in water , 1984 .

[81]  Soon-Heung Chang,et al.  Boiling heat transfer performance and phenomena of Al2O 3-water nano-fluids from a plain surface in a pool , 2004 .

[82]  Y. Ahn,et al.  Investigation on characteristics of thermal conductivity enhancement of nanofluids , 2006 .

[83]  C. T. Nguyen,et al.  Heat transfer enhancement with the use of nanofluids in radial flow cooling systems considering temperature-dependent properties , 2006 .

[84]  Stephen U. S. Choi Nanofluid technology : current status and future research. , 1998 .

[85]  S. Kim,et al.  Surface wettability change during pool boiling of nanofluids and its effect on critical heat flux , 2007 .

[86]  S. Ju,et al.  Theory of thermal conductance in carbon nanotube composites , 2006 .

[87]  M. Radosavljevic,et al.  Carbon nanotube composites for thermal management , 2002, cond-mat/0205418.

[88]  Shung-Wen Kang,et al.  Experimental investigation of silver nano-fluid on heat pipe thermal performance , 2006 .

[89]  Peng Chen,et al.  Characteristics of Nucleate Boiling With Gold Nanoparticles in Water , 2006 .

[90]  U. Maitra,et al.  Facially amphiphilic thiol capped gold and silver nanoparticles , 2008 .

[91]  Ram Seshadri,et al.  Oxide and chalcogenide nanoparticles from hydrothermal/solvothermal reactions , 2002 .

[92]  Rahman Saidur,et al.  A review on the performance of nanoparticles suspended with refrigerants and lubricating oils in refrigeration systems , 2011 .

[93]  R. Buhrman,et al.  Ultrafine metal particles , 1976 .

[94]  Young I Cho,et al.  HYDRODYNAMIC AND HEAT TRANSFER STUDY OF DISPERSED FLUIDS WITH SUBMICRON METALLIC OXIDE PARTICLES , 1998 .

[95]  William W. Yu,et al.  ANOMALOUSLY INCREASED EFFECTIVE THERMAL CONDUCTIVITIES OF ETHYLENE GLYCOL-BASED NANOFLUIDS CONTAINING COPPER NANOPARTICLES , 2001 .

[96]  Somchai Wongwises,et al.  Effect of thermophysical properties models on the predicting of the convective heat transfer coefficient for low concentration nanofluid , 2008 .

[97]  Somchai Wongwises,et al.  Critical review of heat transfer characteristics of nanofluids , 2007 .

[98]  Avtar Singh Ahuja,et al.  Augmentation of heat transport in laminar flow of polystyrene suspensions. I. Experiments and results , 1975 .

[99]  C. Kao,et al.  Microwave plasma synthesis of TiN and ZrN nanopowders , 2007 .

[100]  Ranganathan Kumar,et al.  Heat Transfer Behavior of Oxide Nanoparticles in Pool Boiling Experiment , 2006 .

[101]  Zhou Danna,et al.  Heat transfer enhancement of copper nanofluid with acoustic cavitation , 2004 .

[102]  Clement Kleinstreuer,et al.  Impact analysis of nanoparticle motion mechanisms on the thermal conductivity of nanofluids , 2005 .

[103]  Stephen U. S. Choi,et al.  Role of Brownian motion in the enhanced thermal conductivity of nanofluids , 2004 .

[104]  Amin Behzadmehr,et al.  Prediction of turbulent forced convection of a nanofluid in a tube with uniform heat flux using a two phase approach , 2007 .