The No-U-turn sampler: adaptively setting path lengths in Hamiltonian Monte Carlo
暂无分享,去创建一个
[1] N. Metropolis,et al. Equation of State Calculations by Fast Computing Machines , 1953, Resonance.
[2] Donald Geman,et al. Stochastic Relaxation, Gibbs Distributions, and the Bayesian Restoration of Images , 1984, IEEE Transactions on Pattern Analysis and Machine Intelligence.
[3] S. Duane,et al. Hybrid Monte Carlo , 1987 .
[4] Creutz. Global Monte Carlo algorithms for many-fermion systems. , 1988, Physical review. D, Particles and fields.
[5] Radford M. Neal. An improved acceptance procedure for the hybrid Monte Carlo algorithm , 1992, hep-lat/9208011.
[6] Walter R. Gilks,et al. A Language and Program for Complex Bayesian Modelling , 1994 .
[7] L Tierney,et al. Some adaptive monte carlo methods for Bayesian inference. , 1999, Statistics in medicine.
[8] D. Dittmar. Slice Sampling , 2000 .
[9] Andreas Griewank,et al. Evaluating derivatives - principles and techniques of algorithmic differentiation, Second Edition , 2000, Frontiers in applied mathematics.
[10] Martyn Plummer,et al. JAGS: A program for analysis of Bayesian graphical models using Gibbs sampling , 2003 .
[11] E. Hairer,et al. Simulating Hamiltonian dynamics , 2006, Math. Comput..
[12] M. Plummer,et al. CODA: convergence diagnosis and output analysis for MCMC , 2006 .
[13] H. Robbins. A Stochastic Approximation Method , 1951 .
[14] Christophe Andrieu,et al. A tutorial on adaptive MCMC , 2008, Stat. Comput..
[15] Michael I. Jordan,et al. Graphical Models, Exponential Families, and Variational Inference , 2008, Found. Trends Mach. Learn..
[16] Andrew Thomas,et al. The BUGS project: Evolution, critique and future directions , 2009, Statistics in medicine.
[17] Yurii Nesterov,et al. Primal-dual subgradient methods for convex problems , 2005, Math. Program..
[18] John K Kruschke,et al. Bayesian data analysis. , 2010, Wiley interdisciplinary reviews. Cognitive science.
[19] J. M. Sanz-Serna,et al. Optimal tuning of the hybrid Monte Carlo algorithm , 2010, 1001.4460.
[20] David Huard,et al. PyMC: Bayesian Stochastic Modelling in Python. , 2010, Journal of statistical software.
[21] Radford M. Neal. Probabilistic Inference Using Markov Chain Monte Carlo Methods , 2011 .
[22] Andrew Gelman,et al. Handbook of Markov Chain Monte Carlo , 2011 .
[23] M. Girolami,et al. Riemann manifold Langevin and Hamiltonian Monte Carlo methods , 2011, Journal of the Royal Statistical Society: Series B (Statistical Methodology).
[24] M. Girolami,et al. Lagrangian Dynamical Monte Carlo , 2012, 1211.3759.
[25] M. Betancourt. Generalizing the No-U-Turn Sampler to Riemannian Manifolds , 2013, 1304.1920.
[26] GelmanAndrew,et al. The No-U-turn sampler , 2014 .