Developments on gelling algal galactans, their structure and physico-chemistry

The wide uses of the algal galactans agar, agarose and carrageenans arebased on their unique properties to form strong gels in aqueous solutions. These gels result from peculiar regular chemical structures, specific orderedmolecular conformations and aggregations. In recent years, newmethodologies and instruments have provided a more accurate view of therelationships between the chemical structure and the gelling characteristicsof these complex hybrid and heterogeneous polysaccharides. Methanolysisand reductive acid hydrolysis procedures coupled to differentchromatographic separations allowing the quantitative determination of allthe constituent sugars including the acid labile 3,6-anhydyrogalactose areparticularly emphasised. Means of determining sugar linkages, substitutionsand sequences using chemical, enzymatic and spectroscopic methods arealso presented. Developments in multi- and low-angle laser-light diffusiondetectors coupled to high performance size exclusion chromatography nowrender the determination of molecular weight and molecular weightdistribution of these galactans more accessible. Such techniques also yieldnew information on the aggregate formation of these sulphatedpolysaccharides. These and other data question the existence of thegenerally assumed intertwined double helical conformations of thesegalactans during gel formation.

[1]  D. Rees,et al.  Enzymic synthesis of 3:6-anhydro-l-galactose within porphyran from l-galactose 6-sulphate units. , 1961, The Biochemical journal.

[2]  J. R. Turvey Sulfates of the simple sugars. , 1965, Advances in carbohydrate chemistry and biochemistry.

[3]  C. Araki SOME RECENT STUDIES ON THE POLYSACCHARIDES OF AGAROPHYTES , 1966 .

[4]  J. Christison,et al.  The enzymic degradation of porphyran. , 1967, The Biochemical journal.

[5]  A. Polson,et al.  Some physical characteristics of the agarose molecule. , 1968, Biochimica et biophysica acta.

[6]  C. Araki Chemistry and enzymology of marine algal polysaccharides , 1969 .

[7]  W. E. Scott,et al.  Correlation of Optical Activity with Polysaccharide Conformation , 1970, Nature.

[8]  K. B. Guiseley The relationship between methoxyl content and gelling temperature of agarose , 1970 .

[9]  J. R. Turvey,et al.  Sulphates of monosaccharides and derivatives : Part VIII. Infrared spectra and optical rotations of some glycoside sulphates , 1970 .

[10]  W. Yaphe,et al.  The structure of agar : Part I. Fractionation of a complex mixture of polysaccharides , 1971 .

[11]  H. Parolis,et al.  Sulphated polysaccharides of the Solieriaceae family. I. A polysaccharide from Anatheca dentata. , 1971, Carbohydrate research.

[12]  S. Arnott,et al.  Iota-carrageenan: molecular structure and packing of polysaccharide double helices in oriented fibres of divalent cation salts. , 1974, Journal of molecular biology.

[13]  S. Arnott,et al.  The agarose double helix and its function in agarose gel structure. , 1974, Journal of molecular biology.

[14]  Y. Inoue,et al.  Solvolytic desulfation of glycosaminoglycuronan sulfates with dimethyl sulfoxide containing water or methanol. , 1977, Carbohydrate research.

[15]  K. Wong,et al.  Sulfohydrolase Activity and Carrageenan Biosynthesis in Chondrus crispus (Rhodophyceae). , 1978, Plant physiology.

[16]  W. Yaphe,et al.  Analysis of kappa-iota hybrid carrageenans with kappa-carrageenase, iota-carrageenase and 13C NMR , 1980 .

[17]  C. Rochas,et al.  Activity coefficients of counterions and conformation in kappa‐carrageenan systems , 1980 .

[18]  S. Yarotsky,et al.  13C‐nmr spectroscopy of red algal galactans , 1980 .

[19]  C. Rochas,et al.  Acid and enzymic hydrolysis of Kappa carrageenan , 1981 .

[20]  C. L. Davey,et al.  Electrophoretic analysis of proteins from single bovine muscle fibres. , 1981, The Biochemical journal.

[21]  C. Rochas,et al.  Investigations on Aqueous Solution Properties of κ-Carrageenans , 1981 .

[22]  A. Usov,et al.  Polysaccharides of Algae XXXIII: Isolation and 13C-NMR Spectral Study of Some New Gel-forming Polysaccharides from Japan Sea Red Seaweeds , 1983 .

[23]  C. Rochas,et al.  Spectroscopic characterization and conformation of oligo kappa carrageenans , 1983 .

[24]  W. Long,et al.  Porphyran primary structure. An investigation using beta-agarase I from Pseudomonas atlantica and 13C-NMR spectroscopy. , 1983, European journal of biochemistry.

[25]  J. Craigie,et al.  Effects of temperature and tissue age on gel strength and composition of agar from Gracilaria tikvahiae (Rhodophyceae). , 1984 .

[26]  C. Greer,et al.  Characterization of Hybrid (Beta-Kappa-Gamma) Carrageenan from Eucheuma gelatinae J. Agardh (Rhodophyta, Solieriaceae) Using Carrageenases, Infrared and 13C-Nuclear Magnetic Resonance Spectroscopy , 1984 .

[27]  C. Greer,et al.  Hybrid (Iota-Nu-Kappa) Carrageenan from Eucheuma nudum (Rhodophyta, Solieriaceae), Identified Using Iota- and Kappa-Carrageenases and 13C-Nuclear Magnetic Resonance Spectroscopy , 1984 .

[28]  C. Greer,et al.  Analysis of carrageenan from Hypnea musciformis by using κ- and ι-carrageenanases and 13C-n.m.r. spectroscopy☆ , 1984 .

[29]  A. Usov NMR Spectroscopy of Red Seaweed Polysaccharides: Agars, Carrageenans, and Xylans , 1984 .

[30]  G. Brigand,et al.  Molecular weight distribution of carrageenans by size exclusion chromatography and low angle laser light scattering , 1985 .

[31]  M. Lahaye,et al.  13C-N.m.r.-spectral analysis of sulfated and desulfated polysaccharides of the agar type , 1985 .

[32]  A. Usov,et al.  Polysaccharides of Algae. XXXIV: Detection of iota-Carrageenan in Phyllophora brodiaei (Turn.) J. Ag. (Rhodophyta) Using 13C-NMR Spectroscopy , 1985 .

[33]  C. Rochas,et al.  Iota-carrageenan Oligosaccharides as Model Compounds for Structural Analysis of Iota-carrageenan by 13C-NMR Spectroscopy , 1985 .

[34]  M. Lahaye,et al.  A new procedure for determining the heterogeneity of agar polymers in the cell walls of Gracilaria spp. (Gracilariaceae, Rhodophyta) , 1986 .

[35]  M. Lahaye,et al.  13C-N.M.R.-spectroscopic investigation of agarose oligomers , 1986 .

[36]  M. Lahaye,et al.  Sulfate Content of Carrageenan and Agar Determined by Infrared Spectroscopy , 1986 .

[37]  R. Armisén,et al.  Production, properties and uses of agar , 1987 .

[38]  S. Nilsson,et al.  Cation specificity of the order—disorder transition in iota carrageenan: effects of kappa carrageenan impurities , 1987 .

[39]  A. Usov,et al.  Polysaccharides of Algae. XXXVII. Characterization of Hybrid Structure of Substituted Agarose from Polysiphonia morrowii (Rhodophyta, Rhodomelaceae) Using β-Agarase and 13C-NMR Spectroscopy , 1987 .

[40]  S. Arnott,et al.  The molecular structure of kappa-carrageenan and comparison with iota-carrageenan , 1988 .

[41]  M. Lahaye,et al.  The Chemical Structure of Gracilaria crassissima (P. et H. Crouan in Schramm et Mazé) P. et H. Crouan in Schramm et Mazé and G. tikvahiae McLachlan (Gigartinales, Rhodophyta) Cell-Wall Polysaccharides , 1988 .

[42]  E. Atkins,et al.  New x‐ray diffraction results from agarose: Extended single helix structures and implications for gelation mechanism , 1989 .

[43]  M. Lahaye,et al.  13C-n.m.r. spectroscopic investigation of methylated and charged agarose oligosaccharides and polysaccharides☆ , 1989 .

[44]  M. Lahaye,et al.  Average molecular weight and molecular weight distribution of agarose and agarose-type polysaccharides , 1989 .

[45]  S. Pérez,et al.  Modelling studies of solvent effects on the conformational stability of agarobiose and neoagarobiose and their relationship to agarose. , 1989, International journal of biological macromolecules.

[46]  M. Lahaye,et al.  Solid state 13C-NMR spectroscopy of red seaweeds, agars and carrageenans , 1989 .

[47]  C. Rochas,et al.  Role of the molecular weight on the mechanical properties of kappa carrageenan gels , 1990 .

[48]  H. Saitǒ,et al.  Hydration—dehydration-induced conformational changes of agarose, and kappa- and iota-carrageenans as studied by high-resolution solid-state 13C-nuclear magnetic resonance spectroscopy , 1990 .

[49]  R. Chandrasekaran,et al.  Frontiers in Carbohydrate Research 1: Food Applications , 1990 .

[50]  L. Piculell,et al.  Salt dependence and ion specificity of the coil–helix transition of furcellaran , 1991 .

[51]  R. Furneaux,et al.  Chemical methods for the analysis of sulphated galactans from red algae. , 1991, Carbohydrate research.

[52]  M. Lahaye,et al.  Chemical structure and physico-chemical properties of agar , 1991 .

[53]  F. A. Varkevisser,et al.  Molecular characterisation of κ- and λ-carrageenan by gel permeation chromatography, light scattering, sedimentation analysis and osmometry , 1991 .

[54]  H. Grasdalen,et al.  The use of neocarrabiose oligosaccharides with different length and sulphate substitution as model compounds for 1H-NMR spectroscopy. , 1992, Carbohydrate research.

[55]  C. A. Stortz,et al.  The 13C NMR spectroscopy of carrageenans: calculation of chemical shifts and computer-aided structural determination , 1992 .

[56]  P. Muhrbeck,et al.  Effects of small amounts of kappa-carrageenan on the rheology of aqueous iota-carrageenan , 1992 .

[57]  A. Usov,et al.  Polysaccharides of Algae. 45. Polysaccharide Composition of Red Seaweeds from Kamchatka Coastal Waters (Northwestern Pacific) Studied by Reductive Hydrolysis of Biomass , 1992 .

[58]  S. Knutsen,et al.  Chemical and macromolecular characterisation of agar polymers from Gracilaria dura (C. Agardh) J. Agardh (Gracilariaceae, Rhodophyta) , 1992 .

[59]  A. Voragen,et al.  Improvement of the selective depolymerization of pectic substances by chemical β-elimination in aqueous solution , 1992 .

[60]  J. Guenet,et al.  Molecular structures in biopolymers sols and gels , 1993 .

[61]  J. Huvenne,et al.  Direct structural identification of polysaccharides from red algae by FTIR microspectrometry I: Localization of agar inGracilaria verrucosa sections , 1993 .

[62]  Thierry Chopin,et al.  A new and rapid method for carrageenan identification by FT IR diffuse reflectance spectroscopy directly on dried, ground algal material , 1993 .

[63]  P. Legrand,et al.  A spectroscopic investigation of the carrageenans and agar in the 1500-100 cm−1 spectral range , 1993 .

[64]  S. Hara,et al.  A novel regioselective desulfation of polysaccharide sulfates: Specific 6-O-desulfation with N,O-bis(trimethylsilyl)acetamide. , 1993, Carbohydrate research.

[65]  S. Hara,et al.  Assignment of the Absolute Configuration of Partially Methylated Galactoses by Combined Gas-liquid Chromatography-Mass Spectrometry. , 1993, Bioscience, biotechnology, and biochemistry.

[66]  M. Ciancia,et al.  L-galactose containing galactans from the carrageenophyte Gigartina skottsbergii. , 1993, Phytochemistry.

[67]  E. S. Stevens,et al.  A conformational study of agarose by vacuum uv CD , 1994, Biopolymers.

[68]  A. Usov,et al.  A Modified System of Nomenclature for Red Algal Galactans , 1994 .

[69]  R. Furneaux,et al.  Chemical methylation of agaroid hydroxyl-groups , 1994 .

[70]  R. Furneaux,et al.  Carrageenan from the tetrasporic stage of Gigartina decipiens (Gigartinaceae, Rhodophyta). , 1994, Carbohydrate research.

[71]  Wei Zhang,et al.  Cation specificity and cation binding to low sulfated carrageenans , 1994 .

[72]  L. Piculell,et al.  On the mechanism of gelation of helix-forming biopolymers , 1994 .

[73]  C. A. Stortz,et al.  High-field NMR spectroscopy of cystocarpic and tetrasporic carrageenans from Iridaea undulosa , 1994 .

[74]  S. Singh,et al.  Kinetics of acid hydrolysis of κ-carrageenan as determined by molecular weight (SEC-MALLSRI), gel breaking strength, and viscosity measurements , 1994 .

[75]  K. Hayashi,et al.  Agarose-carrageenan hybrid polysaccharides from Lomentaria catenata. , 1994, Phytochemistry.

[76]  M. Lahaye,et al.  Assessment of methanolysis for the determination of composite sugars of gelling carrageenans and agarose by HPLC. , 1995, Carbohydrate research.

[77]  L. Piculell,et al.  Characterisation of kappa- and iota-carrageenan coils and helices by MALLS/GPC , 1995 .

[78]  E. S. Stevens,et al.  A reexamination of the double‐helix model for agarose gels using optical rotation , 1995 .

[79]  C. A. Stortz,et al.  Separation and quantitation of enantiomeric galactoses and their mono-O-methylethers as their diastereomeric acetylated 1-deoxy-1-(2-hydroxypropylamino) alditols , 1995 .

[80]  R. Furneaux,et al.  The structural analysis of disaccharides from red algal galactans by methylation and reductive partial-hydrolysis , 1995 .

[81]  W. Frith,et al.  Effect of isolation procedures on the molecular composition and physical properties of Eucheuma cottonii carrageenan , 1995 .

[82]  R. Furneaux,et al.  In vivo conversion of 6-O-sulfo-l-galactopyranosyl residues into 3,6-anhydro-l-galactopyranosyl residues in Gracilaria chilensis Bird, McLachlan et Oliveira , 1996 .

[83]  H. Reynaers,et al.  Light scattering studies of the dilute solution behaviour of κ-, ι- and λ-carrageenan , 1996 .

[84]  R. Furneaux,et al.  Biosynthesis of agar polysaccharides in Gracilaria chilensis Bird, McLachlan et Oliveira , 1996 .

[85]  A. Bacic,et al.  Structural analysis of carrageenans from Burmese and Thai samples of Catenella nipae Zanardini , 1996 .

[86]  A. Bacic,et al.  Cell Wall Polysaccharides from Australian Red Algae of the Family Solieriaceae (Gigartinales, Rhodophyta): Highly Methylated Carrageenans from the Genus Rhabdonia , 1996 .

[87]  R. Furneaux,et al.  Biosynthetic Activity and Galactan Composition in Different Regions of the Thallus of Gracilaria chilensis Bird, McLachlan et Oliveira , 1997 .

[88]  P. Potin,et al.  Evidence of Sulfohydrolase Activity in the Red Alga Calliblepharis jubata , 1997 .

[89]  N. Iso,et al.  Sedimentation Analysis of Agar Molecule , 1997 .

[90]  A. Bacic,et al.  Cell-wall polysaccharides from Australian red algae of the family Solieriaceae (Gigartinales, Rhodophyta): novel, highly pyruvated carrageenans from the genus Callophycus , 1997 .

[91]  Stephen E. Harding,et al.  Further observations on the size, shape and hydration of kappa-carrageenan in dilute solution , 1997 .

[92]  I. Chronakis,et al.  Organisation and association of κ-carrageenan helices under different salt conditions , 1997 .

[93]  A. Cerezo,et al.  A l-galactose-containing carrageenan from cystocarpic Gigartina skottsbergii , 1997 .

[94]  B. Sombret,et al.  In situ Measurements of Cell Wall Components in the Red Alga Solieria chordalis (Solieriaceae, Rhodophyta) by FTIR Microspectrometry , 1997 .

[95]  R. Chandrasekaran X-ray diffraction of food polysaccharides. , 1998, Advances in food and nutrition research.

[96]  R. Furneaux,et al.  Structural analysis of carrageenans from the tetrasporic stages of the red algae, Gigartina lanceata and Gigartina chapmanii (Gigartinaceae, Rhodophyta) , 1998 .

[97]  R. Furneaux,et al.  Agars from nine species of red seaweed in the genus Curdiea (Gracilariaceae, Rhodophyta) , 1998 .

[98]  E. Morris,et al.  Kinetic and equilibrium processes in the formation and melting of agarose gels , 1998 .

[99]  S. Hara,et al.  Concurrence of agaroid and carrageenan chains in funoran from the red seaweed Gloiopeltis furcata post. et ruprecht (cryptonemiales, rhodophyta) , 1998 .

[100]  A. Usov Structural analysis of red seaweed galactans of agar and carrageenan groups , 1998 .

[101]  A. Imamura,et al.  Observation of the Molecular Weight Change during the Helix−Coil Transition of κ-Carrageenan Measured by the SEC−LALLS Method , 1998 .

[102]  P. Roepstorff,et al.  Characterization of enzymatic pectin digests by matrix-assisted laser desorption/ionization mass spectrometry. , 1998, Journal of mass spectrometry : JMS.

[103]  O. Smidsrod,et al.  Acid Hydrolysis of κ- and ι-Carrageenan in the Disordered and Ordered Conformations: Characterization of Partially Hydrolyzed Samples and Single-Stranded Oligomers Released from the Ordered Structures , 1998 .

[104]  I. Miller,et al.  Desulfation of algal galactans , 1998 .

[105]  I. Miller The Structure of a Pyruvylated Carrageenan Extracted from Stenogramme interrupta as Determined by 13 C NMR Spectroscopy , 1998 .

[106]  Martin A. K. Williams,et al.  Capillary electrophoresis studies of pectins , 1998 .

[107]  I. Miller,et al.  Desulfation of Algal Galactans. , 1998 .

[108]  J. Thomas-Oates,et al.  Rapid molecular mass and structural determination of plant cell wall-derived oligosaccharides using off-line high-performance anion-exchange chromatography/mass spectrometry. , 1998, Journal of mass spectrometry : JMS.

[109]  A. Cerezo,et al.  Separation and quantitation of enantiomeric 3,6-anhydrogalactoses by conversion to the corresponding diastereomeric acetylated sec-butyl 3,6-anhydrogalactonates , 1998 .

[110]  T. Sparrman,et al.  Liquid Crystallinity versus Gelation of κ-Carrageenan in Mixed Salts: Effects of Molecular Weight, Salt Composition, and Ionic Strength , 1998 .

[111]  H. Reynaers,et al.  On the Molar Mass of κ-Carrageenan in the Course of Conformational Transition from the Disordered to the Fundamental Ordered Form , 1999 .

[112]  H. Reynaers,et al.  Equilibrium and nonequilibrium association processes of κ-carrageenan in aqueous salt solutions , 1999 .

[113]  B. Kloareg,et al.  Oligosaccharide recognition signals and defence reactions in marine plant-microbe interactions. , 1999, Current opinion in microbiology.

[114]  O. Smidsrod,et al.  Analysis of the conformational properties of ?- and ?-carrageenan by size-exclusion chromatography combined with low-angle laser light scattering , 1999 .

[115]  Bernard Quemener,et al.  Quantitative analysis of hydrocolloids in food systems by methanolysis coupled to reverse HPLC. Part 1. Gelling carrageenans , 2000 .

[116]  E. Murano Chemical structure and quality of agars from Gracilaria , 1995, Journal of Applied Phycology.

[117]  C. Greer,et al.  Enzymatic analysis of carrageenans: Structure of carrageenan from Eucheuma nudum , 1984, Hydrobiologia.

[118]  J. Vásquez,et al.  Carrageenophyte identification by second-derivative Fourier transform infrared spectroscopy , 1996, Journal of Applied Phycology.

[119]  M. Lahaye,et al.  Comparative analysis of sulfated galactans from red algae by reductive hydrolysis and mild methanolysis coupled to two different HPLC techniques , 1998, Journal of Applied Phycology.

[120]  O. Smidsrod,et al.  Conformations of κ-carrageenan in solution , 1984, Hydrobiologia.

[121]  S. Paoletti,et al.  Modified procedures for extraction and analysis of carrageenan applied to the red alga Hypnea musciformis , 1995, Journal of Applied Phycology.

[122]  B. Matsuhiro,et al.  Second-derivative Fourier transform infrared spectra of seaweed galactans , 1993, Journal of Applied Phycology.

[123]  A. Usov A new chemical tool for characterization and partial depolymerization of red algal galactans , 1993, Hydrobiologia.

[124]  M. Lahaye,et al.  Chemical structure and physico-chemical properties of agar , 1991, Hydrobiologia.

[125]  B. Quemenera,et al.  Quantitative analysis of hydrocolloids in food systems by methanolysis coupled to reverse HPLC . Part 1 . Gelling carrageenans , 2022 .

[126]  A. C. Brown On Chemical Structure. , 2022 .