Microscopic origins of the surface exciton photoluminescence in ZnO nanostructures

Photoluminescence (PL) studies of the surface exciton peak in ZnO nanostructures at ~3.367 eV are reported to elucidate the nature and origin of the emission and its relationship to nanostructure morphology. Localised voltage application in high vacuum and different gas atmospheres show a consistent PL variation (and recovery), allowing an association of the PL to a bound excitonic transition at the ZnO surface modified by an adsorbate. Studies of samples treated by plasma and of samples exposed to UV light under high vacuum conditions show no consistent effects on the surface exciton peak indicating no involvement of oxygen species. X-ray photoelectron spectroscopy data indicate involvement of adsorbed OH species. The relationship of the surface exciton peak to the nanostructure morphology is discussed in light of x-ray diffraction, scanning and transmission electron microscopy data.

[1]  Jan-Peter Richters,et al.  Surface effects and nonlinear optical properties of ZnO nanowires , 2010 .

[2]  C. Ronning,et al.  Optical size effects in ultrathin ZnO nanowires , 2007 .

[3]  J. Panossian,et al.  Surface excitons in ZnO crystals , 1989 .

[4]  J. Kuenen General discussion , 2005, Netherlands Journal of Plant Pathology.

[5]  Jean-Paul Mosnier,et al.  Surface excitonic emission and quenching effects in Zno nanowire/nanowall systems : Limiting effects on device potential , 2005 .

[6]  M. McCann,et al.  Carbothermal reduction vapor phase transport growth of ZnO nanostructures: Effects of various carbon sources , 2009 .

[7]  W. Schade,et al.  Comparison of the optical properties of as-grown ensembles and single ZnO nanowires , 2006 .

[8]  G. Lapeyre,et al.  Evidence for a Surface-State Exciton on GaAs(110) , 1975 .

[9]  T. Venkatesan,et al.  Compositional origin of surface roughness variations in air-annealed ZnO single crystals , 2008 .

[10]  O. Brandt,et al.  Sub-meV linewidth of excitonic luminescence in single GaN nanowires: Direct evidence for surface excitons , 2010 .

[11]  L. Chow,et al.  Nanofabrication and characterization of ZnO nanorod arrays and branched microrods by aqueous solution route and rapid thermal processing , 2007 .

[12]  Christof Wöll,et al.  The chemistry and physics of zinc oxide surfaces , 2007 .

[13]  A. Tiwari,et al.  Ultraviolet-illumination-enhanced photoluminescence effect in zinc oxide thin films , 2005 .

[14]  H. Gatos,et al.  Quantitative study of the charge transfer in chemisorption; oxygen chemisorption on ZnO , 1977 .

[15]  F. Steinbach,et al.  B. Photo-adsorption, photo-desorption and photo-reactions at surfaces. Oxidation of CO and desorption of oxygen by ultra-violet irradiation of ZnO single crystals under ultra-high vacuum conditions , 1974 .

[16]  A. Waag,et al.  Dynamics of surface-excitonic emission in ZnO nanowires , 2006 .

[17]  A. Waag,et al.  Photoluminescence from ZnO nanowires , 2009 .

[18]  M. Zacharias,et al.  ZnO nanowires and nanobelts: Shape selection and thermodynamic modeling , 2007 .

[19]  M. Henry,et al.  Studying the growth conditions, the alignment and structure of ZnO nanorods , 2005 .

[20]  H. Zeng,et al.  Ordered n-type ZnO nanorod arrays , 2008 .

[21]  J. Y. Sze,et al.  Quenching of surface-exciton emission from ZnO nanocombs by plasma immersion ion implantation , 2007 .

[22]  V. Travnikov Surface radiative recombination in CdS crystals , 1990 .

[23]  T. Voss,et al.  Recombination dynamics of surface-related excitonic states in single ZnO nanowires. , 2008, Journal of nanoscience and nanotechnology.

[24]  Gyu-Tae Kim,et al.  Photocurrent in ZnO nanowires grown from Au electrodes , 2004 .

[25]  T. Voss,et al.  Influence of polymer coating on the low-temperature photoluminescence properties of ZnO nanowires , 2008 .

[26]  Yizheng Jin,et al.  Reduced bound exciton and surface exciton emissions in Al-doped ZnO nanorods exposed to ambient air , 2008 .

[27]  J. Cunningham,et al.  Photo-assisted surface reactions studied by dynamic mass spectrometry , 1974 .

[28]  E. Lifshitz,et al.  Unusual photoluminescence of porous CdS (CdSe) crystals. , 1992 .

[29]  Dongdong Zhang Fast photoresponse and the related change of crystallite barriers for ZnO films deposited by RF sputtering , 1995 .

[30]  W. Stickle,et al.  Handbook of X-Ray Photoelectron Spectroscopy , 1992 .

[31]  A. Fujishima,et al.  Photoinduced Surface Wettability Conversion of ZnO and TiO2 Thin Films , 2001 .

[32]  T. Barr An ESCA study of the termination of the passivation of elemental metals , 1978 .

[33]  Hong Koo Kim,et al.  Ultraviolet detection with ultrathin ZnO epitaxial films treated with oxygen plasma , 2004 .

[34]  K. Thonke,et al.  Au-catalyzed growth processes and luminescence properties of ZnO nanopillars on Si , 2006 .

[35]  Jürgen Christen,et al.  Bound exciton and donor–acceptor pair recombinations in ZnO , 2004 .

[36]  H. Imai,et al.  Photoinduced hydroxylation at ZnO surface , 2003 .

[37]  M. Zacharias,et al.  Enhanced surface-excitonic emission in ZnO/Al2O3 core–shell nanowires , 2008, Nanotechnology.