Error Estimate for Time-Explicit Finite Volume Approximation of Strong Solutions to Systems of Conservation Laws
暂无分享,去创建一个
[1] Camillo De Lellis,et al. The Euler equations as a differential inclusion , 2007 .
[2] Wen-An Yong,et al. Entropy and Global Existence for Hyperbolic Balance Laws , 2004 .
[3] Benoît Merlet,et al. Error estimate for finite volume scheme , 2007, Numerische Mathematik.
[4] Camillo De Lellis,et al. On Admissibility Criteria for Weak Solutions of the Euler Equations , 2007, 0712.3288.
[5] K F R I E D R I C H S,et al. Symmetric Hyperbolic Linear Differential Equations , 2014 .
[6] Juhani Pitkäranta,et al. An analysis of the discontinuous Galerkin method for a scalar hyperbolic equation , 1986 .
[7] Christian Rohde,et al. Finite‐volume schemes for Friedrichs systems in multiple space dimensions: A priori and a posteriori error estimates , 2005 .
[8] Athanasios E. Tzavaras,et al. From Discrete Velocity Boltzmann Equations to Gas Dynamics Before Shocks , 2009 .
[9] Claire Chainais-Hillairet,et al. Finite volume schemes for a nonlinear hyperbolic equation. Convergence towards the entropy solution and error estimate , 1999 .
[10] Horng-Tzer Yau,et al. Relative entropy and hydrodynamics of Ginzburg-Landau models , 1991 .
[11] Anders Szepessy,et al. Convergence of a streamline diffusion finite element method for a conservation law with boundary conditions , 1991 .
[12] B. V. Leer,et al. Towards the ultimate conservative difference scheme V. A second-order sequel to Godunov's method , 1979 .
[13] F. Lagoutière,et al. Probabilistic Analysis of the Upwind Scheme for Transport Equations , 2007, 0712.3217.
[14] Thierry Gallouët,et al. Convergence of an upstream finite volume scheme for a nonlinear hyperbolic equation on a triangular mesh , 1993 .
[15] François Golse,et al. Fluid dynamic limits of kinetic equations II convergence proofs for the boltzmann equation , 1993 .
[16] Eitan Tadmor,et al. Entropy stability theory for difference approximations of nonlinear conservation laws and related time-dependent problems , 2003, Acta Numerica.
[17] Bruno Després,et al. An Explicit A Priori Estimate for a Finite Volume Approximation of Linear Advection on Non-Cartesian Grids , 2004, SIAM J. Numer. Anal..
[18] B. V. Leer,et al. Towards the Ultimate Conservative Difference Scheme , 1997 .
[19] Frédéric Coquel,et al. RELAXATION OF FLUID SYSTEMS , 2012 .
[20] Roberto Natalini,et al. GLOBAL EXISTENCE OF SMOOTH SOLUTIONS FOR PARTIALLYDISSIPATIVE HYPERBOLIC SYSTEMS WITH A CONVEX ENTROPYB , 2002 .
[21] F. Bouchut. Nonlinear Stability of Finite Volume Methods for Hyperbolic Conservation Laws: and Well-Balanced Schemes for Sources , 2005 .
[22] R. J. Diperna,et al. Measure-valued solutions to conservation laws , 1985 .
[23] M. LAFOREST,et al. A Posteriori Error Estimate for Front-Tracking: Systems of Conservation Laws , 2004, SIAM J. Math. Anal..
[24] B. Perthame,et al. Relaxation of Energy and Approximate Riemann Solvers for General Pressure Laws in Fluid Dynamics , 1998 .
[25] C. Dafermos. Hyberbolic Conservation Laws in Continuum Physics , 2000 .
[26] Aaas News,et al. Book Reviews , 1893, Buffalo Medical and Surgical Journal.
[27] P. Lax,et al. On Upstream Differencing and Godunov-Type Schemes for Hyperbolic Conservation Laws , 1983 .
[28] P. Raviart,et al. Numerical Approximation of Hyperbolic Systems of Conservation Laws , 1996, Applied Mathematical Sciences.
[29] R. J. Diperna. Uniqueness of Solutions to Hyperbolic Conservation Laws. , 1978 .
[30] Alexis Vasseur,et al. From Kinetic Equations to Multidimensional Isentropic Gas Dynamics Before Shocks , 2005, SIAM J. Math. Anal..
[31] Tosio Kato,et al. The Cauchy problem for quasi-linear symmetric hyperbolic systems , 1975 .
[32] Alexis Vasseur,et al. Relative Entropy and the Stability of Shocks and Contact Discontinuities for Systems of Conservation Laws with non-BV Perturbations , 2010, 1008.3113.
[33] B. Perthame,et al. Kruzkov's estimates for scalar conservation laws revisited , 1998 .
[34] Long Chen. FINITE VOLUME METHODS , 2011 .
[35] Jean-Michel Ghidaglia,et al. An optimal error estimate for upwind Finite Volume methods for nonlinear hyperbolic conservation laws , 2011 .
[36] Eitan Tadmor,et al. The numerical viscosity of entropy stable schemes for systems of conservation laws. I , 1987 .
[37] Christian Rohde,et al. Error Estimates for Finite Volume Approximations of Classical Solutions for Nonlinear Systems of Hyperbolic Balance Laws , 2006, SIAM J. Numer. Anal..
[38] Laure Saint-Raymond,et al. Hydrodynamic limits: some improvements of the relative entropy method , 2009 .
[39] Athanasios E. Tzavaras,et al. RELATIVE ENTROPY IN HYPERBOLIC RELAXATION , 2005 .
[40] C. Dafermos. The second law of thermodynamics and stability , 1979 .
[41] F. Golse,et al. Fluid dynamic limits of kinetic equations. I. Formal derivations , 1991 .
[42] A. Bressan. Hyperbolic Systems of Conservation Laws , 1999 .
[43] Siddhartha Mishra,et al. Entropy stable shock capturing space–time discontinuous Galerkin schemes for systems of conservation laws , 2014, Numerische Mathematik.
[44] C. Chainais-Hillairet. Second‐order finite‐volume schemes for a non‐linear hyperbolic equation: error estimate , 2000 .
[45] Philippe Villedieu,et al. Convergence of an explicit finite volume scheme for first order symmetric systems , 2003, Numerische Mathematik.
[46] E. Feireisl,et al. Weak–Strong Uniqueness Property for the Full Navier–Stokes–Fourier System , 2011, 1111.4256.
[47] Bernardo Cockburn,et al. An error estimate for finite volume methods for multidimensional conservation laws , 1994 .
[48] R. Eymard,et al. Error estimates for the approximate solutions of a nonlinear hyperbolic equation given by finite volume schemes , 1998 .
[49] Ta-Tsien Li. Global classical solutions for quasilinear hyperbolic systems , 1994 .
[50] Jean-Paul Vila,et al. Convergence and error estimates in finite volume schemes for general multidimensional scalar conservation laws. I. Explicite monotone schemes , 1994 .
[51] Claire Chainais-Hillairet,et al. Finite volume schemes for nonhomogeneous scalar conservation laws: error estimate , 2001, Numerische Mathematik.