Error Estimate for Time-Explicit Finite Volume Approximation of Strong Solutions to Systems of Conservation Laws

We study the finite volume approximation of strong solutions to nonlinear systems of conservation laws. We focus on time-explicit schemes on unstructured meshes, with entropy satisfying numerical fluxes. The numerical entropy dissipation is quantified at each interface of the mesh, which enables to prove a weak–BV estimate for the numerical approximation under a strengthen CFL condition. Then we derive error estimates in the multidimensional case, using the relative entropy between the strong solution and its finite volume approximation. The error terms are carefully studied, leading to a classical $h^1/4$ estimate in $L^2$ under this strengthen CFL condition.

[1]  Camillo De Lellis,et al.  The Euler equations as a differential inclusion , 2007 .

[2]  Wen-An Yong,et al.  Entropy and Global Existence for Hyperbolic Balance Laws , 2004 .

[3]  Benoît Merlet,et al.  Error estimate for finite volume scheme , 2007, Numerische Mathematik.

[4]  Camillo De Lellis,et al.  On Admissibility Criteria for Weak Solutions of the Euler Equations , 2007, 0712.3288.

[5]  K F R I E D R I C H S,et al.  Symmetric Hyperbolic Linear Differential Equations , 2014 .

[6]  Juhani Pitkäranta,et al.  An analysis of the discontinuous Galerkin method for a scalar hyperbolic equation , 1986 .

[7]  Christian Rohde,et al.  Finite‐volume schemes for Friedrichs systems in multiple space dimensions: A priori and a posteriori error estimates , 2005 .

[8]  Athanasios E. Tzavaras,et al.  From Discrete Velocity Boltzmann Equations to Gas Dynamics Before Shocks , 2009 .

[9]  Claire Chainais-Hillairet,et al.  Finite volume schemes for a nonlinear hyperbolic equation. Convergence towards the entropy solution and error estimate , 1999 .

[10]  Horng-Tzer Yau,et al.  Relative entropy and hydrodynamics of Ginzburg-Landau models , 1991 .

[11]  Anders Szepessy,et al.  Convergence of a streamline diffusion finite element method for a conservation law with boundary conditions , 1991 .

[12]  B. V. Leer,et al.  Towards the ultimate conservative difference scheme V. A second-order sequel to Godunov's method , 1979 .

[13]  F. Lagoutière,et al.  Probabilistic Analysis of the Upwind Scheme for Transport Equations , 2007, 0712.3217.

[14]  Thierry Gallouët,et al.  Convergence of an upstream finite volume scheme for a nonlinear hyperbolic equation on a triangular mesh , 1993 .

[15]  François Golse,et al.  Fluid dynamic limits of kinetic equations II convergence proofs for the boltzmann equation , 1993 .

[16]  Eitan Tadmor,et al.  Entropy stability theory for difference approximations of nonlinear conservation laws and related time-dependent problems , 2003, Acta Numerica.

[17]  Bruno Després,et al.  An Explicit A Priori Estimate for a Finite Volume Approximation of Linear Advection on Non-Cartesian Grids , 2004, SIAM J. Numer. Anal..

[18]  B. V. Leer,et al.  Towards the Ultimate Conservative Difference Scheme , 1997 .

[19]  Frédéric Coquel,et al.  RELAXATION OF FLUID SYSTEMS , 2012 .

[20]  Roberto Natalini,et al.  GLOBAL EXISTENCE OF SMOOTH SOLUTIONS FOR PARTIALLYDISSIPATIVE HYPERBOLIC SYSTEMS WITH A CONVEX ENTROPYB , 2002 .

[21]  F. Bouchut Nonlinear Stability of Finite Volume Methods for Hyperbolic Conservation Laws: and Well-Balanced Schemes for Sources , 2005 .

[22]  R. J. Diperna,et al.  Measure-valued solutions to conservation laws , 1985 .

[23]  M. LAFOREST,et al.  A Posteriori Error Estimate for Front-Tracking: Systems of Conservation Laws , 2004, SIAM J. Math. Anal..

[24]  B. Perthame,et al.  Relaxation of Energy and Approximate Riemann Solvers for General Pressure Laws in Fluid Dynamics , 1998 .

[25]  C. Dafermos Hyberbolic Conservation Laws in Continuum Physics , 2000 .

[26]  Aaas News,et al.  Book Reviews , 1893, Buffalo Medical and Surgical Journal.

[27]  P. Lax,et al.  On Upstream Differencing and Godunov-Type Schemes for Hyperbolic Conservation Laws , 1983 .

[28]  P. Raviart,et al.  Numerical Approximation of Hyperbolic Systems of Conservation Laws , 1996, Applied Mathematical Sciences.

[29]  R. J. Diperna Uniqueness of Solutions to Hyperbolic Conservation Laws. , 1978 .

[30]  Alexis Vasseur,et al.  From Kinetic Equations to Multidimensional Isentropic Gas Dynamics Before Shocks , 2005, SIAM J. Math. Anal..

[31]  Tosio Kato,et al.  The Cauchy problem for quasi-linear symmetric hyperbolic systems , 1975 .

[32]  Alexis Vasseur,et al.  Relative Entropy and the Stability of Shocks and Contact Discontinuities for Systems of Conservation Laws with non-BV Perturbations , 2010, 1008.3113.

[33]  B. Perthame,et al.  Kruzkov's estimates for scalar conservation laws revisited , 1998 .

[34]  Long Chen FINITE VOLUME METHODS , 2011 .

[35]  Jean-Michel Ghidaglia,et al.  An optimal error estimate for upwind Finite Volume methods for nonlinear hyperbolic conservation laws , 2011 .

[36]  Eitan Tadmor,et al.  The numerical viscosity of entropy stable schemes for systems of conservation laws. I , 1987 .

[37]  Christian Rohde,et al.  Error Estimates for Finite Volume Approximations of Classical Solutions for Nonlinear Systems of Hyperbolic Balance Laws , 2006, SIAM J. Numer. Anal..

[38]  Laure Saint-Raymond,et al.  Hydrodynamic limits: some improvements of the relative entropy method , 2009 .

[39]  Athanasios E. Tzavaras,et al.  RELATIVE ENTROPY IN HYPERBOLIC RELAXATION , 2005 .

[40]  C. Dafermos The second law of thermodynamics and stability , 1979 .

[41]  F. Golse,et al.  Fluid dynamic limits of kinetic equations. I. Formal derivations , 1991 .

[42]  A. Bressan Hyperbolic Systems of Conservation Laws , 1999 .

[43]  Siddhartha Mishra,et al.  Entropy stable shock capturing space–time discontinuous Galerkin schemes for systems of conservation laws , 2014, Numerische Mathematik.

[44]  C. Chainais-Hillairet Second‐order finite‐volume schemes for a non‐linear hyperbolic equation: error estimate , 2000 .

[45]  Philippe Villedieu,et al.  Convergence of an explicit finite volume scheme for first order symmetric systems , 2003, Numerische Mathematik.

[46]  E. Feireisl,et al.  Weak–Strong Uniqueness Property for the Full Navier–Stokes–Fourier System , 2011, 1111.4256.

[47]  Bernardo Cockburn,et al.  An error estimate for finite volume methods for multidimensional conservation laws , 1994 .

[48]  R. Eymard,et al.  Error estimates for the approximate solutions of a nonlinear hyperbolic equation given by finite volume schemes , 1998 .

[49]  Ta-Tsien Li Global classical solutions for quasilinear hyperbolic systems , 1994 .

[50]  Jean-Paul Vila,et al.  Convergence and error estimates in finite volume schemes for general multidimensional scalar conservation laws. I. Explicite monotone schemes , 1994 .

[51]  Claire Chainais-Hillairet,et al.  Finite volume schemes for nonhomogeneous scalar conservation laws: error estimate , 2001, Numerische Mathematik.