On determinants and eigenvalue theory of tensors

We investigate properties of the determinants of tensors, and their applications in the eigenvalue theory of tensors. We show that the determinant inherits many properties of the determinant of a matrix. These properties include: solvability of polynomial systems, product formula for the determinant of a block tensor, product formula of the eigenvalues and [email protected]?s inequality. As a simple application, we show that if the leading coefficient tensor of a polynomial system is a triangular tensor with nonzero diagonal elements, then the system definitely has a solution in the complex space. We investigate the characteristic polynomial of a tensor through the determinant and the higher order traces. We show that the k-th order trace of a tensor is equal to the sum of the k-th powers of the eigenvalues of this tensor, and the coefficients of its characteristic polynomial are recursively generated by the higher order traces. Explicit formula for the second order trace of a tensor is given.

[1]  Charles Van Loan,et al.  Block tensors and symmetric embeddings , 2010, ArXiv.

[2]  L. Qi,et al.  Higher Order Positive Semidefinite Diffusion Tensor Imaging , 2010, SIAM J. Imaging Sci..

[3]  Gene H. Golub,et al.  Symmetric Tensors and Symmetric Tensor Rank , 2008, SIAM J. Matrix Anal. Appl..

[4]  Charles R. Johnson,et al.  Matrix analysis , 1985, Statistical Inference for Engineers and Data Scientists.

[5]  L. Qi,et al.  E-Characteristic Polynomials of Tensors , 2012, 1208.1607.

[6]  I. M. Gelʹfand,et al.  Discriminants, Resultants, and Multidimensional Determinants , 1994 .

[7]  Liqun Qi,et al.  The Best Rank-One Approximation Ratio of a Tensor Space , 2011, SIAM J. Matrix Anal. Appl..

[8]  Aaron Dutle Spectra of hypergraphs , 2012 .

[9]  Vin de Silva,et al.  Tensor rank and the ill-posedness of the best low-rank approximation problem , 2006, math/0607647.

[10]  B. Sturmfels,et al.  The number of eigenvalues of a tensor , 2010, 1004.4953.

[11]  David A. Cox,et al.  Using Algebraic Geometry , 1998 .

[12]  Liqun Qi,et al.  Eigenvalues of a real supersymmetric tensor , 2005, J. Symb. Comput..

[13]  A. L. Dixon On a Form of the Eliminant of Two Quantics , 1908 .

[14]  David A. Cox,et al.  Ideals, Varieties, and Algorithms: An Introduction to Computational Algebraic Geometry and Commutative Algebra, 3/e (Undergraduate Texts in Mathematics) , 2007 .

[15]  A. Morozov,et al.  Analogue of the identity Log Det = Trace Log for resultants , 2008 .

[16]  L. Shen,et al.  Linear Algebra , 1968 .

[17]  Qingzhi Yang,et al.  Further Results for Perron-Frobenius Theorem for Nonnegative Tensors , 2010, SIAM J. Matrix Anal. Appl..

[18]  Yinyu Ye,et al.  The cubic spherical optimization problems , 2012, Math. Comput..

[19]  Kung-Ching Chang,et al.  On eigenvalue problems of real symmetric tensors , 2009 .

[20]  Tamás Terlaky,et al.  New stopping criteria for detecting infeasibility in conic optimization , 2009, Optim. Lett..

[21]  K. Pearson Essentially Positive Tensors , 2010 .

[22]  Tan Zhang,et al.  Primitivity, the Convergence of the NQZ Method, and the Largest Eigenvalue for Nonnegative Tensors , 2011, SIAM Journal on Matrix Analysis and Applications.

[23]  G. Golub,et al.  Foundations of numerical multilinear algebra: decomposition and approximation of tensors , 2007 .

[24]  Michael K. Ng,et al.  Finding the Largest Eigenvalue of a Nonnegative Tensor , 2009, SIAM J. Matrix Anal. Appl..

[25]  Liqun Qi,et al.  Algebraic connectivity of an even uniform hypergraph , 2012, J. Comb. Optim..

[26]  Liqun Qi,et al.  Rank and eigenvalues of a supersymmetric tensor, the multivariate homogeneous polynomial and the algebraic hypersurface it defines , 2006, J. Symb. Comput..

[27]  Luke Oeding,et al.  Eigenvectors of tensors and algorithms for Waring decomposition , 2011, J. Symb. Comput..

[28]  L. Qi,et al.  Positive definiteness of Diffusion Kurtosis Imaging , 2012 .

[29]  Arthur Cayley,et al.  The Collected Mathematical Papers: On the Theory of Determinants , 2022 .

[30]  B. Sturmfels SOLVING SYSTEMS OF POLYNOMIAL EQUATIONS , 2002 .

[31]  Joshua N. Cooper,et al.  Spectra of Uniform Hypergraphs , 2011, 1106.4856.

[32]  Charles R. Johnson,et al.  Topics in Matrix Analysis , 1991 .

[33]  J. Landsberg Tensors: Geometry and Applications , 2011 .

[34]  Lek-Heng Lim,et al.  Singular values and eigenvalues of tensors: a variational approach , 2005, 1st IEEE International Workshop on Computational Advances in Multi-Sensor Adaptive Processing, 2005..

[35]  V. Balan Spectra of symmetric tensors and m-root Finsler models , 2012 .

[36]  Arthur Cayley,et al.  The Collected Mathematical Papers: On the Theory of Linear Transformations , 2009 .

[37]  G. Strang Introduction to Linear Algebra , 1993 .

[38]  J. J. Sylvester,et al.  XXIII. A method of determining by mere inspection the derivatives from two equations of any degree , 1840 .

[39]  Marcello Pelillo,et al.  A generalization of the Motzkin–Straus theorem to hypergraphs , 2009, Optim. Lett..

[40]  Kung-Ching Chang,et al.  Perron-Frobenius theorem for nonnegative tensors , 2008 .

[41]  Алексей Юрьевич Морозов,et al.  Новые и старые результаты в теории результантов@@@New and old results in resultant theory , 2010 .

[42]  L. Qi Eigenvalues and invariants of tensors , 2007 .

[43]  V. Dolotin,et al.  Introduction to Non-Linear Algebra , 2008 .

[44]  F. S. Macaulay Some Formulæ in Elimination , 1902 .

[45]  Pierre Comon,et al.  Symmetric tensor decomposition , 2009, 2009 17th European Signal Processing Conference.