Simulating the dynamics of time-dependent Hamiltonians with a truncated Dyson series

We provide a general method for efficiently simulating time-dependent Hamiltonian dynamics on a circuit-model based quantum computer. Our approach is based on approximating the truncated Dyson series of the evolution operator, extending the earlier proposal by Berry to evolution generated by explicitly time-dependent Hamiltonians. Two alternative strategies are proposed to implement time ordering while exploiting the superposition principle for sampling the Hamiltonian at different times. The resource cost of our simulation algorithm retains the optimal logarithmic dependence on the inverse of the desired precision.

[1]  A. Harrow,et al.  Efficient distributed quantum computing , 2012, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[2]  D. Berry,et al.  Black-Box Quantum State Preparation without Arithmetic. , 2018, Physical review letters.

[3]  D. Berry,et al.  Improved techniques for preparing eigenstates of fermionic Hamiltonians , 2017, 1711.10460.

[4]  L. Butler Chemical reaction dynamics beyond the Born-Oppenheimer approximation. , 1998, Annual review of physical chemistry.

[5]  I. Chuang,et al.  Optimal Hamiltonian Simulation by Quantum Signal Processing. , 2016, Physical review letters.

[6]  E. Farhi,et al.  A Quantum Adiabatic Evolution Algorithm Applied to Random Instances of an NP-Complete Problem , 2001, Science.

[7]  Andrew N. Jordan,et al.  Optimal adaptive control for quantum metrology with time-dependent Hamiltonians , 2016, Nature Communications.

[8]  Alexandru Paler,et al.  Encoding Electronic Spectra in Quantum Circuits with Linear T Complexity , 2018, Physical Review X.

[9]  Richard Cleve,et al.  Gate-efficient discrete simulations of continuous-time quantum query algorithms , 2012, Quantum Inf. Comput..

[10]  Andrew M. Childs,et al.  Black-box hamiltonian simulation and unitary implementation , 2009, Quantum Inf. Comput..

[11]  F. Nori,et al.  Quantum Simulation , 2013, Quantum Atom Optics.

[12]  Andrew M. Childs,et al.  Simulating Hamiltonian dynamics with a truncated Taylor series. , 2014, Physical review letters.

[13]  M. Head‐Gordon,et al.  Simulated Quantum Computation of Molecular Energies , 2005, Science.

[14]  Nathan Wiebe,et al.  Hamiltonian simulation using linear combinations of unitary operations , 2012, Quantum Inf. Comput..

[15]  Andrew M. Childs,et al.  Exponential improvement in precision for simulating sparse Hamiltonians , 2013, Forum of Mathematics, Sigma.

[16]  John Preskill,et al.  Quantum Computing in the NISQ era and beyond , 2018, Quantum.

[17]  D. Abrams,et al.  Simulation of Many-Body Fermi Systems on a Universal Quantum Computer , 1997, quant-ph/9703054.

[18]  Michael T. Goodrich,et al.  Zig-zag sort: a simple deterministic data-oblivious sorting algorithm running in O(n log n) time , 2014, STOC.

[19]  I. Chuang,et al.  Hamiltonian Simulation by Qubitization , 2016, Quantum.

[20]  R. Feynman Simulating physics with computers , 1999 .

[21]  P. Høyer,et al.  Higher order decompositions of ordered operator exponentials , 2008, 0812.0562.

[22]  Barry C. Sanders,et al.  Simulating quantum dynamics on a quantum computer , 2010, 1011.3489.

[23]  Annie Y. Wei,et al.  Exponentially more precise quantum simulation of fermions in second quantization , 2015, 1506.01020.

[24]  F. Verstraete,et al.  Quantum simulation of time-dependent Hamiltonians and the convenient illusion of Hilbert space. , 2011, Physical review letters.

[25]  E. Farhi,et al.  A Quantum Approximate Optimization Algorithm , 2014, 1411.4028.

[26]  Sheng-Tzong Cheng,et al.  Quantum switching and quantum merge sorting , 2006, IEEE Trans. Circuits Syst. I Regul. Pap..

[27]  Isaac L. Chuang,et al.  Methodology of Resonant Equiangular Composite Quantum Gates , 2016, 1603.03996.

[28]  Andrew M. Childs,et al.  Hamiltonian Simulation with Nearly Optimal Dependence on all Parameters , 2015, 2015 IEEE 56th Annual Symposium on Foundations of Computer Science.

[29]  Seth Lloyd,et al.  Universal Quantum Simulators , 1996, Science.

[30]  Andrew M. Childs On the Relationship Between Continuous- and Discrete-Time Quantum Walk , 2008, 0810.0312.