Adaptive Petrov-Galerkin Methods for First Order Transport Equations

We propose stable variational formulations for certain linear, unsymmetric operators with first order transport equations in bounded domains serving as the primary focus of this paper. The central objective is to develop for such classes adaptive solution concepts with provable error reduction. To adaptively resolve anisotropic solution features such as propagating singularities, the presently proposed variational formulations allow, in particular, the employment of trial spaces spanned by directional representation systems. Since such systems, typically given as frames, are known to be stable only in $L_2$, special emphasis is placed on $L_2$-stable formulations. The proposed stability concept is based on perturbations of certain “ideal” test spaces in Petrov--Galerkin formulations; see also [L. F. Demkowicz and J. Gopalakrishnan, Comput. Methods Appl. Mech. Engrg., 199 (2010), pp. 1558--1572], [L. Demkowicz and J. Gopalakrishnan, Numer. Methods Partial Differential Equations, 27 (2011), pp. 70--105], [J...

[1]  Wang-Q Lim,et al.  Compactly Supported Shearlets , 2010, 1009.4359.

[2]  Rob Stevenson,et al.  An Adaptive Wavelet Method for Solving High-Dimensional Elliptic PDEs , 2009 .

[3]  E. Candès,et al.  New tight frames of curvelets and optimal representations of objects with piecewise C2 singularities , 2004 .

[4]  Reinhard H Stephan Dahlke Adaptive Wavelet Methods for Saddle Point Problems , 1999 .

[5]  Wolfgang Dahmen,et al.  Adaptivity and variational stabilization for convection-diffusion equations∗ , 2012 .

[6]  Leszek Demkowicz,et al.  A class of discontinuous Petrov–Galerkin methods. II. Optimal test functions , 2011 .

[7]  Wang-Q Lim,et al.  The Discrete Shearlet Transform: A New Directional Transform and Compactly Supported Shearlet Frames , 2010, IEEE Transactions on Image Processing.

[8]  Wolfgang Dahmen,et al.  Adaptive wavelet methods for elliptic operator equations: Convergence rates , 2001, Math. Comput..

[9]  T. Hughes,et al.  Streamline upwind/Petrov-Galerkin formulations for convection dominated flows with particular emphasis on the incompressible Navier-Stokes equations , 1990 .

[10]  D. Labate,et al.  Resolution of the wavefront set using continuous shearlets , 2006, math/0605375.

[11]  Konstantin Grella,et al.  Sparse tensor spherical harmonics approximation in radiative transfer , 2011, J. Comput. Phys..

[12]  Rob P. Stevenson,et al.  Space-time adaptive wavelet methods for parabolic evolution problems , 2009, Math. Comput..

[13]  T. Hughes,et al.  A theoretical framework for Petrov-Galerkin methods with discontinuous weighting functions: application to the streamline-upwind procedure. , 1982 .

[14]  Wang-Q Lim,et al.  Compactly supported shearlets are optimally sparse , 2010, J. Approx. Theory.

[15]  M. Fornasier,et al.  Adaptive Frame Methods for Elliptic Operator Equations: The Steepest Descent Approach , 2007 .

[16]  Wolfgang Dahmen,et al.  Adaptive Wavelet Methods II—Beyond the Elliptic Case , 2002, Found. Comput. Math..

[17]  Thomas A. Manteuffel,et al.  First-Order System \CL\CL* (FOSLL*): Scalar Elliptic Partial Differential Equations , 2001, SIAM J. Numer. Anal..

[18]  L. D. Marini,et al.  A Priori Error Analysis of Residual-Free Bubbles for Advection-Diffusion Problems , 1999 .

[19]  Wolfgang Dahmen,et al.  Adaptive Wavelet Methods for Saddle Point Problems - Optimal Convergence Rates , 2002, SIAM J. Numer. Anal..

[20]  Leszek Demkowicz,et al.  A class of discontinuous Petrov-Galerkin methods. Part III , 2012 .

[21]  C. Bardos Problèmes aux limites pour les équations aux dérivées partielles du premier ordre à coefficients réels; théorèmes d'approximation; application à l'équation de transport , 1970 .

[22]  Leszek Demkowicz,et al.  A Class of Discontinuous Petrov–Galerkin Methods. Part I: The Transport Equation , 2010 .

[23]  B. Després,et al.  SUR UNE FORMULATION VARIATIONNELLE DE TYPE ULTRA-FAIBLE , 1994 .

[24]  Thomas A. Manteuffel,et al.  A Boundary Functional for the Least-Squares Finite- Element Solution of Neutron Transport Problems , 1999, SIAM J. Numer. Anal..

[25]  A. Patera,et al.  Reduced basis approximation and a posteriori error estimation for affinely parametrized elliptic coercive partial differential equations , 2007 .

[26]  Gisela Widmer,et al.  Sparse finite elements for radiative transfer , 2009 .

[27]  Ralf Hiptmair,et al.  Sparse adaptive finite elements for radiative transfer , 2008, J. Comput. Phys..

[28]  A. Patera,et al.  Reduced basis approximation and a posteriori error estimation for affinely parametrized elliptic coercive partial differential equations , 2007 .

[29]  G. Kutyniok,et al.  Construction of Compactly Supported Shearlet Frames , 2010, 1003.5481.

[30]  R. Dautray,et al.  Théorèmes de trace Lp pour des espaces de fonctions de la neutronique , 1984 .

[31]  Thomas A. Manteuffel,et al.  First-Order System LL* (FOSLL*) for General Scalar Elliptic Problems in the Plane , 2005, SIAM J. Numer. Anal..