Adaptive Petrov-Galerkin Methods for First Order Transport Equations
暂无分享,去创建一个
Wolfgang Dahmen | Christoph Schwab | Chunyan Huang | Gerrit Welper | W. Dahmen | C. Schwab | Chunyan Huang | G. Welper
[1] Wang-Q Lim,et al. Compactly Supported Shearlets , 2010, 1009.4359.
[2] Rob Stevenson,et al. An Adaptive Wavelet Method for Solving High-Dimensional Elliptic PDEs , 2009 .
[3] E. Candès,et al. New tight frames of curvelets and optimal representations of objects with piecewise C2 singularities , 2004 .
[4] Reinhard H Stephan Dahlke. Adaptive Wavelet Methods for Saddle Point Problems , 1999 .
[5] Wolfgang Dahmen,et al. Adaptivity and variational stabilization for convection-diffusion equations∗ , 2012 .
[6] Leszek Demkowicz,et al. A class of discontinuous Petrov–Galerkin methods. II. Optimal test functions , 2011 .
[7] Wang-Q Lim,et al. The Discrete Shearlet Transform: A New Directional Transform and Compactly Supported Shearlet Frames , 2010, IEEE Transactions on Image Processing.
[8] Wolfgang Dahmen,et al. Adaptive wavelet methods for elliptic operator equations: Convergence rates , 2001, Math. Comput..
[9] T. Hughes,et al. Streamline upwind/Petrov-Galerkin formulations for convection dominated flows with particular emphasis on the incompressible Navier-Stokes equations , 1990 .
[10] D. Labate,et al. Resolution of the wavefront set using continuous shearlets , 2006, math/0605375.
[11] Konstantin Grella,et al. Sparse tensor spherical harmonics approximation in radiative transfer , 2011, J. Comput. Phys..
[12] Rob P. Stevenson,et al. Space-time adaptive wavelet methods for parabolic evolution problems , 2009, Math. Comput..
[13] T. Hughes,et al. A theoretical framework for Petrov-Galerkin methods with discontinuous weighting functions: application to the streamline-upwind procedure. , 1982 .
[14] Wang-Q Lim,et al. Compactly supported shearlets are optimally sparse , 2010, J. Approx. Theory.
[15] M. Fornasier,et al. Adaptive Frame Methods for Elliptic Operator Equations: The Steepest Descent Approach , 2007 .
[16] Wolfgang Dahmen,et al. Adaptive Wavelet Methods II—Beyond the Elliptic Case , 2002, Found. Comput. Math..
[17] Thomas A. Manteuffel,et al. First-Order System \CL\CL* (FOSLL*): Scalar Elliptic Partial Differential Equations , 2001, SIAM J. Numer. Anal..
[18] L. D. Marini,et al. A Priori Error Analysis of Residual-Free Bubbles for Advection-Diffusion Problems , 1999 .
[19] Wolfgang Dahmen,et al. Adaptive Wavelet Methods for Saddle Point Problems - Optimal Convergence Rates , 2002, SIAM J. Numer. Anal..
[20] Leszek Demkowicz,et al. A class of discontinuous Petrov-Galerkin methods. Part III , 2012 .
[21] C. Bardos. Problèmes aux limites pour les équations aux dérivées partielles du premier ordre à coefficients réels; théorèmes d'approximation; application à l'équation de transport , 1970 .
[22] Leszek Demkowicz,et al. A Class of Discontinuous Petrov–Galerkin Methods. Part I: The Transport Equation , 2010 .
[23] B. Després,et al. SUR UNE FORMULATION VARIATIONNELLE DE TYPE ULTRA-FAIBLE , 1994 .
[24] Thomas A. Manteuffel,et al. A Boundary Functional for the Least-Squares Finite- Element Solution of Neutron Transport Problems , 1999, SIAM J. Numer. Anal..
[25] A. Patera,et al. Reduced basis approximation and a posteriori error estimation for affinely parametrized elliptic coercive partial differential equations , 2007 .
[26] Gisela Widmer,et al. Sparse finite elements for radiative transfer , 2009 .
[27] Ralf Hiptmair,et al. Sparse adaptive finite elements for radiative transfer , 2008, J. Comput. Phys..
[28] A. Patera,et al. Reduced basis approximation and a posteriori error estimation for affinely parametrized elliptic coercive partial differential equations , 2007 .
[29] G. Kutyniok,et al. Construction of Compactly Supported Shearlet Frames , 2010, 1003.5481.
[30] R. Dautray,et al. Théorèmes de trace Lp pour des espaces de fonctions de la neutronique , 1984 .
[31] Thomas A. Manteuffel,et al. First-Order System LL* (FOSLL*) for General Scalar Elliptic Problems in the Plane , 2005, SIAM J. Numer. Anal..