A hydrated clast in the Mokoia CV3 carbonaceous chondrite: Evidence for intensive aqueous alteration in the CV parent body

[1]  I. Ohnishi,et al.  Indicators of parent-body processes: Hydrated chondrules and fine-grained rims in the Mokoia CV3 carbonaceous chondrite , 2010 .

[2]  M. Weisberg,et al.  The GRO 95577 CR1 chondrite and hydration of the CR parent body , 2007 .

[3]  Alan E. Rubin,et al.  Progressive aqueous alteration of CM carbonaceous chondrites , 2007 .

[4]  J. Trigo‐Rodríguez,et al.  Non-nebular origin of dark mantles around chondrules and inclusions in CM chondrites , 2006 .

[5]  E. Scott,et al.  Nebula Evolution of Thermally Processed Solids: Reconciling Models and Meteorites , 2005 .

[6]  K. Keil,et al.  Amoeboid olivine aggregates and related objects in carbonaceous chondrites: records of nebular and asteroid processes , 2004 .

[7]  P. Bland,et al.  Multiple formation mechanisms of ferrous olivine in CV carbonaceous chondrites during fluid-assisted metamorphism , 2004 .

[8]  E. Scott,et al.  Classification of Meteorites , 2003 .

[9]  M. Zolensky,et al.  Mineralogy and noble-gas signatures of the carbonate-rich lithology of the Tagish Lake carbonaceous chondrite: evidence for an accretionary breccia , 2003 .

[10]  I. Ohnishi,et al.  Dark inclusions in the Mokoia CV3 chondrite: Evidence for aqueous alteration and subsequent thermal and shock metamorphism , 2002 .

[11]  Michael E. Zolensky,et al.  Mineralogy of Tagish Lake: An ungrouped type 2 carbonaceous chondrite , 2002 .

[12]  G. Flynn,et al.  Fine‐grained dust rims in the Tagish Lake carbonaceous chondrite: Evidence for parent body alteration , 2002 .

[13]  A. Brearley,et al.  Aqueous alteration of chondrules in the CM carbonaceous chondrite, Allan Hills 81002: implications for parent body alteration , 2001 .

[14]  K. Tomeoka,et al.  Phyllosilicate-rich chondrule rims in the vigarano cv3 chondrite: evidence for parent-body processes , 2000 .

[15]  V. V. Biryukov,et al.  Mineralogy, petrography, bulk chemical, iodine‐xenon, and oxygen‐isotopic compositions of dark inclusions in the reduced CV3 chondrite Efremovka , 1999 .

[16]  M. Zolensky,et al.  Progressive alteration in CV3 chondrites: More evidence for asteroidal alteration , 1998 .

[17]  M. Kimura,et al.  Hydrous and anhydrous alterations of chondrules in Kaba and Mokoia CV chondrites , 1998 .

[18]  P. Buseck,et al.  Unusual forms of magnetite in the Orgueil carbonaceous chondrite , 1998 .

[19]  M. Zolensky,et al.  Secondary calcium‐iron‐rich minerals in the Bali‐like and Allende‐like oxidized CV3 chondrites and Allende dark inclusions , 1998 .

[20]  A. Brearley Disordered biopyriboles, amphibole, and talc in the Allende meteorite: products of nebular or parent body aqueous alteration? , 1997, Science.

[21]  M. Zolensky,et al.  Origin of fayalitic olivine rims and lath‐shaped matrix olivine in the CV3 chondrite Allende and its dark inclusions , 1997 .

[22]  M. Zolensky,et al.  Petrology of Allende dark inclusions , 1997 .

[23]  M. Zolensky,et al.  The Kaidun meteorite: Mineralogy of an unusual CM1 lithology , 1996 .

[24]  Martin R. Lee,et al.  Aqueous alteration in the matrix of the Vigarano (CV3) carbonaceous chondrite , 1996 .

[25]  T. Kojima,et al.  Indicators of aqueous alteration and thermal metamorphism on the CV parent body: Microtextures of a dark inclusion from Allende , 1996 .

[26]  R. Clayton,et al.  Aqueous alteration of the Bali CV3 chondrite: evidence from mineralogy, mineral chemistry, and oxygen isotopic compositions. , 1994, Geochimica et cosmochimica acta.

[27]  H. Takeda,et al.  Unusual dark clasts in the Vigarano CV3 carbonaceous chondrite: Record of parent body process , 1993 .

[28]  M. Zolensky,et al.  Mineralogy and composition of matrix and chondrule rims in carbonaceous chondrites , 1993 .

[29]  R. Clayton,et al.  The CR (Renazzo-type) carbonaceous chondrite group and its implications , 1993 .

[30]  D. Stöffler,et al.  Accretionary dust mantles in CM chondrites: Evidence for solar nebula processes , 1992 .

[31]  H. Takeda,et al.  Na‐bearing Ca‐Al‐rich inclusions in the Yamato‐791717 CO carbonaceous chondrite , 1992 .

[32]  M. Prinz,et al.  CI chondrite-like clasts in the Nilpena polymict ureilite: Implications for aqueous alteration processes in CI chondrites , 1992 .

[33]  P. Buseck,et al.  Phyllosilicates in the Mokoia CV carbonaceous chondrite: Evidence for aqueous alteration in an oxidizing environment , 1990 .

[34]  R. Clayton,et al.  Dark inclusions in Allende, Leoville, and Vigarano - Evidence for nebular oxidation of CV3 constituents , 1990 .

[35]  P. Buseck,et al.  Aqueous alteration in the Kaba CV3 carbonaceous chondrite , 1989 .

[36]  B. Spettel,et al.  Chemical Composition of an Unusual Xenolith of the Allende Meteorite , 1989 .

[37]  A. Mcguire,et al.  Origin of zoned fine-grained inclusions in the Allende meteorite , 1989 .

[38]  Peter R. Buseck,et al.  Matrix mineralogy of the Orgueil CI carbonaceous chondrite , 1988 .

[39]  L. Grossman,et al.  Alteration of Al-rich inclusions inside amoeboid olivine aggregates in the Allende meteorite , 1987 .

[40]  P. Buseck,et al.  Indicators of aqueous alteration in CM carbonaceous chondrites: Microtextures of a layered mineral containing Fe, S, O and Ni , 1985 .

[41]  R. Cohen,et al.  Mineralogy and petrology of chondrules and inclusions in the Mokoia CV3 chondrite , 1983 .

[42]  D. J. Barber Matrix phyllosilicates and associated minerals in C2M carbonaceous chondrites , 1981 .

[43]  J F Kerridge,et al.  Magnetite in CI Carbonaceous Meteorites: Origin by Aqueous Activity on a Planetesimal Surface , 1979, Science.

[44]  S. Richardson,et al.  The composition of carbonaceous chondrite matrix , 1977 .

[45]  J. Jedwab La magnétite de la météorite d'Orgueil vue au microscope électronique à balayage , 1971 .