Highway dimension, shortest paths, and provably efficient algorithms

Computing driving directions has motivated many shortest path heuristics that answer queries on continental scale networks, with tens of millions of intersections, literally instantly, and with very low storage overhead. In this paper we complement the experimental evidence with the first rigorous proofs of efficiency for many of the heuristics suggested over the past decade. We introduce the notion of highway dimension and show how low highway dimension gives a unified explanation for several seemingly different algorithms.

[1]  Edsger W. Dijkstra,et al.  A note on two problems in connexion with graphs , 1959, Numerische Mathematik.

[2]  Sharon L. Milgram,et al.  The Small World Problem , 1967 .

[3]  David S. Johnson,et al.  Approximation algorithms for combinatorial problems , 1973, STOC.

[4]  E. Denardo,et al.  Shortest-Route Methods: 1. Reaching, Pruning, and Buckets , 1979, Oper. Res..

[5]  Robert E. Tarjan,et al.  Data structures and network algorithms , 1983, CBMS-NSF regional conference series in applied mathematics.

[6]  Robert E. Tarjan,et al.  Fibonacci heaps and their uses in improved network optimization algorithms , 1984, JACM.

[7]  Jon M. Kleinberg,et al.  The small-world phenomenon: an algorithmic perspective , 2000, STOC '00.

[8]  Mikkel Thorup,et al.  Approximate distance oracles , 2001, JACM.

[9]  Ronald J. Gutman,et al.  Reach-Based Routing: A New Approach to Shortest Path Algorithms Optimized for Road Networks , 2004, ALENEX/ANALC.

[10]  Peter Sanders,et al.  Highway Hierarchies Hasten Exact Shortest Path Queries , 2005, ESA.

[11]  Andrew V. Goldberg,et al.  Computing the shortest path: A search meets graph theory , 2005, SODA '05.

[12]  Stefan Funke,et al.  Ultrafast Shortest-Path Queries via Transit Nodes , 2006, The Shortest Path Problem.

[13]  Haim Kaplan,et al.  Reach for A*: Efficient Point-to-Point Shortest Path Algorithms , 2006, ALENEX.

[14]  Haim Kaplan,et al.  Reach for A*: Shortest Path Algorithms with Preprocessing , 2006, The Shortest Path Problem.

[15]  Rolf H. Möhring,et al.  Fast Point-to-Point Shortest Path Computations with Arc-Flags , 2006, The Shortest Path Problem.

[16]  Peter Sanders,et al.  In Transit to Constant Time Shortest-Path Queries in Road Networks , 2007, ALENEX.

[17]  Dorothea Wagner,et al.  Shortest-Path Indices: Establishing a Methodology for Shortest-Path Problems , 2007 .

[18]  Lee-Ad Gottlieb,et al.  An Optimal Dynamic Spanner for Doubling Metric Spaces , 2008, ESA.

[19]  Peter Sanders,et al.  Contraction Hierarchies: Faster and Simpler Hierarchical Routing in Road Networks , 2008, WEA.

[20]  Andrew V. Goldberg,et al.  The shortest path problem : ninth DIMACS implementation challenge , 2009 .

[21]  Daniel Delling,et al.  SHARC: Fast and robust unidirectional routing , 2008, JEAL.

[22]  Peter Sanders,et al.  Engineering highway hierarchies , 2012, JEAL.