Some covariance models based on normal scale mixtures

Modelling spatio-temporal processes has become an important issue in current research. Since Gaussian processes are essentially determined by their second order structure, broad classes of covariance functions are of interest. Here, a new class is described that merges and generalizes various models presented in the literature, in particular models in Gneiting (J. Amer. Statist. Assoc. 97 (2002) 590--600) and Stein (Nonstationary spatial covariance functions (2005) Univ. Chicago). Furthermore, new models and a multivariate extension are introduced.

[1]  Tilmann Gneiting,et al.  Normal scale mixtures and dual probability densities , 1997 .

[2]  A. Yaglom Correlation Theory of Stationary and Related Random Functions I: Basic Results , 1987 .

[3]  Jorge Mateu,et al.  Quasi-arithmetic means of covariance functions with potential applications to space-time data , 2006, J. Multivar. Anal..

[4]  M. Stein Nonstationary spatial covariance functions , 2005 .

[5]  Dionissios T. Hristopulos,et al.  Methods for generating non-separable spatiotemporal covariance models with potential environmental applications , 2004 .

[6]  Christopher J. Paciorek,et al.  Nonstationary Gaussian Processes for Regression and Spatial Modelling , 2003 .

[7]  I. M. Pyshik,et al.  Table of integrals, series, and products , 1965 .

[8]  P. Guttorp,et al.  Geostatistical Space-Time Models, Stationarity, Separability, and Full Symmetry , 2007 .

[9]  Hans Burkhardt,et al.  Learning Equivariant Functions with Matrix Valued Kernels , 2007, J. Mach. Learn. Res..

[10]  Michael L. Stein,et al.  Statistical methods for regular monitoring data , 2005 .

[11]  M. Stein Space–Time Covariance Functions , 2005 .

[12]  Holger Wendland,et al.  Scattered Data Approximation: Conditionally positive definite functions , 2004 .

[13]  Chunsheng Ma Semiparametric spatio-temporal covariance models with the ARMA temporal margin , 2005 .

[14]  Jorge Mateu,et al.  On potentially negative space time covariances obtained as sum of products of marginal ones , 2008 .

[15]  Chunsheng Ma,et al.  Families of spatio-temporal stationary covariance models , 2003 .

[16]  N. Cressie,et al.  Classes of nonseparable, spatio-temporal stationary covariance functions , 1999 .

[17]  Chunsheng Ma,et al.  Recent developments on the construction of spatio-temporal covariance models , 2008 .

[18]  Jorge Mateu,et al.  Recent advances to model anisotropic space–time data , 2008, Stat. Methods Appl..

[19]  T. Gneiting,et al.  Analogies and correspondences between variograms and covariance functions , 2001, Advances in Applied Probability.

[20]  C. Berg,et al.  Harmonic Analysis on Semigroups , 1984 .

[21]  Chunsheng Ma,et al.  Spatio-Temporal Covariance Functions Generated by Mixtures , 2002 .

[22]  David R. Cox,et al.  A simple spatial-temporal model of rainfall , 1988, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[23]  Y. Sinai,et al.  Theory of probability and random processes , 2007 .

[24]  Tilmann Gneiting,et al.  Stochastic Models That Separate Fractal Dimension and the Hurst Effect , 2001, SIAM Rev..

[25]  I. J. Schoenberg,et al.  Metric spaces and positive definite functions , 1938 .

[26]  Chunsheng Ma,et al.  Spatio-temporal variograms and covariance models , 2005, Advances in Applied Probability.

[27]  I. J. Schoenberg Metric spaces and completely monotone functions , 1938 .

[28]  T. Gneiting Nonseparable, Stationary Covariance Functions for Space–Time Data , 2002 .

[29]  Chunsheng Ma,et al.  Linear combinations of space-time covariance functions and variograms , 2005, IEEE Transactions on Signal Processing.