Gilbert damping tensor within the breathing Fermi surface model: anisotropy and non-locality

In magnetization dynamics, the Gilbert damping α is often taken as a parameter. We report on a theoretical investigation of α, taking into account crystal symmetries, spin–orbit coupling and thermal reservoirs. The tensor α?> is calculated within the Kamberský breathing Fermi-surface model. The computations are performed within a tight-binding electronic structure approach for the bulk and semi-infinite systems. Slater–Koster parameters are obtained by fitting the electronic structure to first-principles results obtained within the multiple-scattering theory. We address the damping tensor for the bulk and surfaces of the transition metals Fe and Co. The role of various contributions are investigated: intra- and interband transitions, electron and magnetic temperature as well as surface orientation. Our results reveal a complicated non-local, anisotropic damping that depends on all three thermal reservoirs.

[1]  S. Parkin,et al.  Observation of the intrinsic Gilbert damping constant in Co/Ni multilayers independent of the stack number with perpendicular anisotropy , 2013 .

[2]  Andrei Kirilyuk,et al.  Laser-induced magnetization dynamics and reversal in ferrimagnetic alloys , 2013, Reports on progress in physics. Physical Society.

[3]  G. Woltersdorf,et al.  First-principles calculation of the Gilbert damping parameter via the linear response formalism with application to magnetic transition metals and alloys , 2013, 1301.2114.

[4]  A. Sakuma,et al.  Theoretical Study on Gilbert Damping of Nonuniform Magnetization Precession in Ferromagnetic Metals , 2012 .

[5]  M. Costa,et al.  Accelerating the switching of magnetic nanoclusters by anisotropy-driven magnetization dynamics , 2012, 1210.5836.

[6]  J. Henk,et al.  Significance of nutation in magnetization dynamics of nanostructures , 2012 .

[7]  A. Thomas,et al.  Insights into Ultrafast Demagnetization in Pseudogap Half-Metals , 2012, 1202.3874.

[8]  J. Henk,et al.  Temperature-dependent Heisenberg exchange coupling constants from linking electronic-structure calculations and Monte Carlo simulations , 2012 .

[9]  G. Lonzarich,et al.  Towards resolution of the Fermi surface in underdoped high-Tc superconductors , 2011, Reports on progress in physics. Physical Society.

[10]  A. Taroni,et al.  A theoretical analysis of inertia-like switching in magnets: applications to a synthetic antiferromagnet , 2011, 1109.1414.

[11]  A. Brataas,et al.  Magnetization dissipation in ferromagnets from scattering theory , 2011, 1104.1625.

[12]  D. Kodderitzsch,et al.  Ab Initio Calculation of the Gilbert Damping Parameter via Linear Response Formalism , 2011, IEEE Transactions on Magnetics.

[13]  T. Rasing,et al.  Ultrafast optical manipulation of magnetic order , 2010 .

[14]  M. Ciornei,et al.  Magnetization dynamics in the inertial regime: Nutation predicted at short time scales , 2010, 1008.2177.

[15]  T. Miyazaki,et al.  Gilbert damping in perpendicularly magnetized Pt/Co/Pt films investigated by all-optical pump-probe technique , 2010 .

[16]  A. Trunova Ferromagnetische Resonanz an oxidfreien magnetischen Fe und FeRh Nanopartikeln , 2009 .

[17]  Claudia Mewes,et al.  Origin of low Gilbert damping in half metals , 2009 .

[18]  C. Vittoria,et al.  Relaxation mechanism for ordered magnetic materials , 2009, 0906.4979.

[19]  O. Eriksson,et al.  A method for atomistic spin dynamics simulations: implementation and examples , 2008, 0806.1582.

[20]  V. Kamberský,et al.  Spin-orbital Gilbert damping in common magnetic metals , 2007 .

[21]  Zhibin Lin,et al.  Temperature dependences of the electron–phonon coupling, electron heat capacity and thermal conductivity in Ni under femtosecond laser irradiation , 2007 .

[22]  M D Stiles,et al.  Identification of the dominant precession-damping mechanism in Fe, Co, and Ni by first-principles calculations. , 2007, Physical review letters.

[23]  D. Ralph,et al.  Spin-torque ferromagnetic resonance measurements of damping in nanomagnets , 2007, cond-mat/0703577.

[24]  N. Inaba,et al.  Damping Constants of Ni-Fe and Ni-Co Alloy Thin Films , 2006, IEEE Transactions on Magnetics.

[25]  D. Steiauf,et al.  Breathing Fermi surface model for noncollinear magnetization: a generalization of the Gilbert equation , 2006 .

[26]  Yasuo Ando,et al.  Magnetic Damping in Ferromagnetic Thin Films , 2006 .

[27]  Heiko Wende,et al.  Two-magnon scattering and viscous Gilbert damping in ultrathin ferromagnets , 2006 .

[28]  D. Steiauf,et al.  Damping of spin dynamics in nanostructures: An ab initio study , 2005 .

[29]  David G. Pettifor,et al.  Magnetic properties of point defects in iron within the tight-binding-bond Stoner model , 2005 .

[30]  T. Gilbert A phenomenological theory of damping in ferromagnetic materials , 2004, IEEE Transactions on Magnetics.

[31]  K. Binder Monte‐Carlo Methods , 2003 .

[32]  M. Mehl,et al.  TOPICAL REVIEW: The Slater Koster tight-binding method: a computationally efficient and accurate approach , 2003 .

[33]  J. Kuneš,et al.  First-principles investigation of the damping of fast magnetization precession in ferromagnetic 3d metals , 2002 .

[34]  M. Okutani,et al.  Orbital Magnetic Moment in Superlattices of Transition Metals , 2000 .

[35]  J. Burdett,et al.  Electronic structure and properties of solids , 1996 .

[36]  W. Schattke,et al.  Band-structure parameters by genetic algorithm. , 1996, Physical review. B, Condensed matter.

[37]  J. Pflaum,et al.  Gilbert damping and g-factor in FexCo1−x alloy films , 1995 .

[38]  J. Henk,et al.  Interface electronic structure by the renormalization method: theory and application to Sb/GaAs , 1994 .

[39]  W. Schattke,et al.  A subroutine package for computing Green's functions of relaxed surfaces by the renormalization method , 1993 .

[40]  Papaconstantopoulos,et al.  Tight-binding coherent-potential-approximation study of the electronic states of palladium-noble-metal alloys. , 1987, Physical review. B, Condensed matter.

[41]  V. A. Gubanov,et al.  Local spin density functional approach to the theory of exchange interactions in ferromagnetic metals and alloys , 1987 .

[42]  Julie B. Staunton,et al.  A first-principles theory of ferromagnetic phase transitions in metals , 1985 .

[43]  G. M. Stocks,et al.  The “disordered local moment” picture of itinerant magnetism at finite temperatures , 1984 .

[44]  V. Kamberský FMR linewidth and disorder in metals , 1984 .

[45]  J. S. Faulkner,et al.  Scattering theory and cluster calculations , 1977 .

[46]  S. M. Bhagat,et al.  Temperature variation of ferromagnetic relaxation in the 3 d transition metals , 1974 .

[47]  J. Blackman,et al.  Generalized Locator—Coherent-Potential Approach to Binary Alloys , 1971 .

[48]  Leonard Meirovitch,et al.  Methods of analytical dynamics , 1970 .

[49]  J. C. Slater,et al.  Simplified LCAO Method for the Periodic Potential Problem , 1954 .

[50]  M. Cinal,et al.  Calculation of Gilbert damping in ferromagnetic films , 2013 .

[51]  Gábor Csányi,et al.  Multiscale Simulation Methods in Molecular Sciences , 2009 .

[52]  Stefan Blügel,et al.  Multiscale Simulation Methods in Molecular Sciences - Lecture Notes , 2009 .

[53]  J. Walowski Non-Local/Local Gilbert Damping in Nickel and Permalloy Thin Films , 2007 .

[54]  Peter Weinberger,et al.  Electron Scattering in Solid Matter , 2005 .

[55]  M. J. Mehl,et al.  The Slater–Koster tight-binding method: a computationally efficient and accurate approach , 2003 .

[56]  Goldberg,et al.  Genetic algorithms , 1993, Robust Control Systems with Genetic Algorithms.

[57]  Tománek,et al.  Structural properties of Fe crystals. , 1993, Physical review. B, Condensed matter.

[58]  Boatner,et al.  Soft-mode studies in KTa0.93Nb0.07O3 with use of the time-resolved third-order optical susceptibility chi 3. , 1993, Physical review. B, Condensed matter.

[59]  David E. Goldberg,et al.  Genetic Algorithms in Search Optimization and Machine Learning , 1988 .

[60]  K. Binder Monte Carlo methods in statistical physics , 1979 .

[61]  Z. Frait,et al.  Temperature Dependence of the FMR Linewidth of Iron Single-Crystal Platelets , 1966 .

[62]  Lev Davidovich Landau,et al.  ON THE THEORY OF THE DISPERSION OF MAGNETIC PERMEABILITY IN FERROMAGNETIC BODIES , 1935 .