Covariance estimation and related problems in portfolio optimization

This overview paper reviews covariance estimation problems and related issues arising in the context of portfolio optimization. Given several assets, a portfolio optimizer seeks to allocate a fixed amount of capital among these assets so as to optimize some cost function. For example, the classical Markowitz portfolio optimization framework defines portfolio risk as the variance of the portfolio return, and seeks an allocation which minimizes the risk subject to a target expected return. If the mean return vector and the return covariance matrix for the underlying assets are known, the Markowitz problem has a closed-form solution. In practice, however, the expected returns and the covariance matrix of the returns are unknown and are therefore estimated from historical data. This introduces several problems which render the Markowitz theory impracticable in real portfolio management applications. This paper discusses these problems and reviews some of the existing literature on methods for addressing them.

[1]  Olivier Ledoit,et al.  A well-conditioned estimator for large-dimensional covariance matrices , 2004 .

[2]  Noureddine El Karoui,et al.  On the Realized Risk of High-Dimensional Markowitz Portfolios , 2013, SIAM J. Financial Math..

[3]  E. Fama,et al.  Industry costs of equity , 1997 .

[4]  Akiko Takeda,et al.  On the role of norm constraints in portfolio selection , 2011, Comput. Manag. Sci..

[5]  Philippe Jorion,et al.  Portfolio Optimization in Practice , 1992 .

[6]  Christoffer Bengtsson On Portfolio Selection : Improved Covariance Matrix Estimation for Swedish Asset Returns , 2002 .

[7]  E. Fama,et al.  Size and Book-to-Market Factors in Earnings and Returns , 1995 .

[8]  Reha H. Tütüncü,et al.  Robust Asset Allocation , 2004, Ann. Oper. Res..

[9]  V. Plerou,et al.  Random matrix approach to cross correlations in financial data. , 2001, Physical review. E, Statistical, nonlinear, and soft matter physics.

[10]  Noureddine El Karoui,et al.  High-dimensionality effects in the Markowitz problem and other quadratic programs with linear equality constraints: risk underestimation , 2009 .

[11]  Noureddine El Karoui,et al.  High-dimensionality effects in the Markowitz problem and other quadratic programs with linear constraints: Risk underestimation , 2010, 1211.2917.

[12]  Guofu Zhou,et al.  Markowitz meets Talmud: A combination of sophisticated and naive diversification strategies ☆ , 2011 .

[13]  D. Ruppert Statistics and Data Analysis for Financial Engineering , 2010 .

[14]  David S. Matteson,et al.  Time-Series Models of Dynamic Volatility and Correlation , 2011, IEEE Signal Processing Magazine.

[15]  Raman Uppal,et al.  A Generalized Approach to Portfolio Optimization: Improving Performance by Constraining Portfolio Norms , 2009, Manag. Sci..

[16]  Serge Darolles,et al.  Multi-Factor Models and Signal Processing Techniques: Survey and Examples , 2011 .

[17]  Ilya Pollak,et al.  Weight shrinkage for portfolio optimization , 2011, 2011 4th IEEE International Workshop on Computational Advances in Multi-Sensor Adaptive Processing (CAMSAP).

[18]  Richard O. Michaud,et al.  The Markowitz Optimization Enigma: Is ‘Optimized’ Optimal? , 2005 .

[19]  E. Elton,et al.  ESTIMATING THE DEPENDENCE STRUCTURE OF SHARE PRICES —IMPLICATIONS FOR PORTFOLIO SELECTION , 1973 .

[20]  H. Levy,et al.  Markowitz Versus the Talmudic Portfolio Diversification Strategies , 2009, The Journal of Portfolio Management.

[21]  J. Bouchaud,et al.  RANDOM MATRIX THEORY AND FINANCIAL CORRELATIONS , 2000 .

[22]  V. Plerou,et al.  Universal and Nonuniversal Properties of Cross Correlations in Financial Time Series , 1999, cond-mat/9902283.

[23]  Jonathan Fletcher,et al.  An Examination of Resampled Portfolio Efficiency , 2001 .

[24]  Donald Goldfarb,et al.  Robust Portfolio Selection Problems , 2003, Math. Oper. Res..

[25]  Robert A. Stubbs,et al.  Incorporating estimation errors into portfolio selection: Robust portfolio construction , 2006 .

[26]  Ali N. Akansu,et al.  Portfolio Risk in Multiple Frequencies , 2011, IEEE Signal Processing Magazine.

[27]  M. Avellaneda,et al.  Statistical arbitrage in the US equities market , 2010 .

[28]  S. Ross,et al.  Economic Forces and the Stock Market , 1986 .

[29]  Ilya Pollak,et al.  Comparison of several covariance matrix estimators for portfolio optimization , 2011, 2011 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP).

[30]  Raymond Kan,et al.  Optimal Portfolio Choice with Parameter Uncertainty , 2007, Journal of Financial and Quantitative Analysis.

[31]  R. Jagannathan,et al.  Risk Reduction in Large Portfolios: Why Imposing the Wrong Constraints Helps , 2002 .

[32]  R. Jansen,et al.  Optimal Benchmark Tracking with Small Portfolios , 2002 .

[33]  Bernd Scherer,et al.  Portfolio Resampling: Review and Critique , 2002 .

[34]  Jack L. Treynor,et al.  MUTUAL FUND PERFORMANCE* , 2007 .

[35]  Lorenzo Garlappi,et al.  Portfolio Selection with Parameter and Model Uncertainty: A Multi-Prior Approach , 2004 .

[36]  Victor DeMiguel,et al.  Optimal Versus Naive Diversification: How Inefficient is the 1/N Portfolio Strategy? , 2009 .

[37]  J. Bouchaud,et al.  Noise Dressing of Financial Correlation Matrices , 1998, cond-mat/9810255.

[38]  Mark Broadie,et al.  Computing efficient frontiers using estimated parameters , 1993, Ann. Oper. Res..

[39]  Simon Benninga,et al.  Shrinking the Covariance Matrix , 2007 .

[40]  W. Sharpe A Simplified Model for Portfolio Analysis , 1963 .

[41]  W. Ziemba,et al.  The Effect of Errors in Means, Variances, and Covariances on Optimal Portfolio Choice , 1993 .

[42]  Haim Levy,et al.  Markowitz’s Mean–Variance Rule and the Talmudic Diversification Recommendation , 2010 .

[43]  Yarema Okhrin,et al.  Multivariate Shrinkage for Optimal Portfolio Weights , 2007 .

[44]  Philippe Jorion International Portfolio Diversification with Estimation Risk , 1985 .

[45]  M. Best,et al.  On the Sensitivity of Mean-Variance-Efficient Portfolios to Changes in Asset Means: Some Analytical and Computational Results , 1991 .

[46]  David S. Matteson,et al.  GARCH MODELS OF DYNAMIC VOLATILITY AND CORRELATION , 2011 .

[47]  I. Daubechies,et al.  Sparse and stable Markowitz portfolios , 2007, Proceedings of the National Academy of Sciences.

[48]  Bernd Girod,et al.  Mobile Visual Search , 2011, IEEE Signal Processing Magazine.

[49]  Richard O. Michaud,et al.  Efficient Asset Management: A Practical Guide to Stock Portfolio Optimization and Asset Allocation , 1998 .

[50]  Olivier Ledoit,et al.  Improved estimation of the covariance matrix of stock returns with an application to portfolio selection , 2003 .

[51]  J. Jobson,et al.  Putting Markowitz theory to work , 1981 .

[52]  K. Strimmer,et al.  Statistical Applications in Genetics and Molecular Biology A Shrinkage Approach to Large-Scale Covariance Matrix Estimation and Implications for Functional Genomics , 2011 .

[53]  Philippe Jorion Bayes-Stein Estimation for Portfolio Analysis , 1986, Journal of Financial and Quantitative Analysis.

[54]  Seung-Jean Kim,et al.  Maximum Likelihood Covariance Estimation with a Condition Number Constraint , 2006, 2006 Fortieth Asilomar Conference on Signals, Systems and Computers.