The Formal Specification Language mCRL2

We introduce mCRL2, a specification language that can be used to specify and analyse the behaviour of distributed systems. This language is the successor of the mCRL specification language. The mCRL2 language extends a timed basic process algebra with the possibility to define and use abstract data types. The mCRL2 data language features predefined and higher-order data types. The process algebraic part of mCRL2 allows a faithful translation of coloured Petri nets and component based systems: we have introduced multiactions and we have separated communication and parallelism.

[1]  Jan Friso Groote,et al.  The Syntax and Semantics of μCRL , 1995 .

[2]  Jan Friso Groote,et al.  Verifying a Sliding Window Protocol in µCRL , 2004, AMAST.

[3]  Rob J. van Glabbeek,et al.  The Linear Time - Branching Time Spectrum II , 1993, CONCUR.

[4]  Rob J. van Glabbeek,et al.  Branching time and abstraction in bisimulation semantics , 1996, JACM.

[5]  Twan Basten,et al.  Partial-Order Process Algebra (and its Relation to Petri Nets) , 2001, Handbook of Process Algebra.

[6]  J.C.M. Baeten,et al.  CONCUR '90 Theories of Concurrency: Unification and Extension , 1990, Lecture Notes in Computer Science.

[7]  Jan Friso Groote,et al.  Process algebra with guards: Combining Hoare logic with process algebra , 1994, Formal Aspects of Computing.

[8]  Jan Friso Groote,et al.  Algebraic Process Verification , 2001, Handbook of Process Algebra.

[9]  J. F. Groote The Syntax and Semantics of timed μ CRL , 1997 .

[10]  Maciej Koutny,et al.  A Unified Model for Nets and Process Algebras , 2001, Handbook of Process Algebra.

[11]  Sjouke Mauw,et al.  A Process Algebra for Interworkings , 2001, Handbook of Process Algebra.

[12]  Jos C. M. Baeten,et al.  A Congruence Theorem for Structured Operational Semantics with Predicates , 1993, CONCUR.

[13]  Tac Tim Willemse Semantics and verification in process algebras with data and timing , 2003 .

[14]  Hans-Dieter Ehrich,et al.  Specification of abstract data types , 1996 .

[15]  Jan Friso Groote,et al.  New developments around the CRL tool set 1 1 http://www.cwi.nl/~mcrl , 2003 .

[16]  J. Bergstra,et al.  Handbook of Process Algebra , 2001 .

[17]  Jan Friso Groote,et al.  µCRL: A Toolset for Analysing Algebraic Specifications , 2001, CAV.

[18]  Bernhard Möller Algebraic Specifications with Higher-Order Operations , 1986, ADT.

[19]  M. J. van Weerdenburg GenSpect process algebra , 2004 .

[20]  Rob J. van Glabbeek,et al.  The Linear Time - Branching Time Spectrum I , 2001, Handbook of Process Algebra.

[21]  Jan Friso Groote,et al.  From µCRL to mCRL2: Motivation and Outline , 2006, Electron. Notes Theor. Comput. Sci..

[22]  Jan Friso Groote,et al.  New developments around the mCRL tool set , 2003, Electron. Notes Theor. Comput. Sci..

[23]  Jan Friso Groote,et al.  Invariants in Process Algebra with Data , 1993, CONCUR.

[24]  Karl Meinke,et al.  Higher-Order Equational Logic for Specification, Simulation and Testing , 1995, HOA.

[25]  Jan Friso Groote,et al.  Confluence for Process Verification , 1995, Theor. Comput. Sci..

[26]  Martin Wirsing,et al.  Algebraic Specifications of Reachable Higher-Order Algebras , 1987, ADT.

[27]  A. S. Klusener,et al.  Models and axioms for a fragment of real time process algebra , 1993 .

[28]  Hans-Jörg Kreowski,et al.  Recent Trends in Data Type Specification , 1985, Informatik-Fachberichte.

[29]  Jan Friso Groote,et al.  Process Algebra Needs Proof Methodology (Columns: Concurrency) , 2004, Bull. EATCS.

[30]  Wan Fokkink,et al.  Model checking a cache coherence protocol for a Java DSM implementation , 2003, Proceedings International Parallel and Distributed Processing Symposium.

[31]  S. P. Luttik Choice quantification in process algebra , 2002 .

[32]  Jan Friso Groote,et al.  Analysis of a distributed system for lifting trucks , 2003, J. Log. Algebraic Methods Program..

[33]  Stanley Burris,et al.  A course in universal algebra , 1981, Graduate texts in mathematics.

[34]  Jan Friso Groote,et al.  Focus points and convergent process operators: a proof strategy for protocol verification , 2001, J. Log. Algebraic Methods Program..

[35]  Gordon D. Plotkin,et al.  A structural approach to operational semantics , 2004, J. Log. Algebraic Methods Program..

[36]  Maciej Koutny,et al.  Petri Net Algebra , 2001, Monographs in Theoretical Computer Science An EATCS Series.

[37]  Jan F Groote The syntax and semantics of timed $\mu CRL$ , 1997 .

[38]  Mark van der Zwaag,et al.  The cones and foci proof technique for timed transition systems , 2001, Inf. Process. Lett..

[39]  Karl Meinke,et al.  Universal Algebra in Higher Types , 1990, Theor. Comput. Sci..

[40]  Kurt Jensen,et al.  Coloured Petri Nets: Modelling and Validation of Concurrent Systems , 2009 .

[41]  Jan Friso Groote,et al.  Completeness of Timed μCRL , 2002 .

[42]  Muck van Weerdenburg Process Algebra with Local Communication , 2008, Electron. Notes Theor. Comput. Sci..

[43]  L. G. L. T. Meertens The IFIP TC2/WG 2.1 Working Conference on Program specification and transformation , 1987 .

[44]  Jan A. Bergstra,et al.  Non Interleaving Process Algebra , 1993, CONCUR.

[45]  Robin Milner,et al.  A Calculus of Communicating Systems , 1980, Lecture Notes in Computer Science.